

# Department of Energy

**Richland Operations Office** P.O. Box 550 Richland, Washington 99352

> 1995 DEC 5

95-CHD-090

Mr. John T. Conway, Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue NW, Suite 700 Washington, D.C. 20004

Dear Mr. Conway:

TRANSMITTAL OF U.S. DEPARTMENT OF ENERGY, RICHLAND OPERATIONS OFFICE (RL), COMPLETE HISTORICAL TANK LAYERING MODELS - UPDATE OF DEFENSE NUCLEAR FACILITIES SAFETY BOARD (DNFSB) RECOMMENDATION 93-5, COMMITMENT 1.16

Attached is the latest update of the "Tank Layering Model Manual for the Northeast, Southwest and Northwest Quadrants of Hanford Tank Farms," and the latest update of the "Tank Layer Model, Rev. 1, for Southeast Quadrant." Note that these updates consolidate information previously sent to DNFSB.

As the DNFSB is aware, the Tank Layering Model is an ongoing process being conducted by Dr. Steve Agnew and his associates at Los Alamos National Laboratory. The data contained in the attachments is up-to-date. However, work will be performed in Fiscal Year 1996 that will validate and refine the model. RL will continue to keep DNFSB informed of any changes that come from the ongoing work process.

If you have any questions, you may contact me at (509) 376-7395 or your staff may contact Jackson Kinzer, Assistant Manager for Tank Waste Remediation System, at (509) 376-7591.

Sincerely, Manager

CHD:NWW

Attachments

- cc w/encls:
- R. Guimond, EM-2
- M. A. Hunemuller, EM-30
- K. T. Lang, EM-36
- S. L. Trine, RL DNFSB Liaison J. C. Tseng, EM-30
- M. B. Whitaker, EH-9

# Tank Layer Model (TLM) Rev. 1

for

**SE Quadrant** 

by

Stephen F. Agnew Rob Corbin Toma Duran Kenn Jurgensen Bonnie Young Ted Ortiz

Chemical Science and Technology Division Los Alamos National Laboratory Los Alamos, New Mexico 87545

March 1995

## ACKNOWLEDGMENTS

A project of this nature would not be possible were it not for the help of a great number of people. They are Todd Brown and Joseph Jones (WHC) for their help with data gathering and Richard Anema (Ogden Envir.) for data validation, as well as a great number of other people at WHC and PNL for their generous help.

This work was performed under the auspices of the Department of Energy.

# **Information Feedback Card**

# Tank Layer Model (TLM)

We would appreciate any feedback on this document. Please send to Stephen F. Agnew, Los Alamos National Laboratory, MS J586, P.O. Box 1663, Los Alamos, NM 87545.

Title of comment:

۱

Text of comment:

iii

## **Table of Contents**

2

| I.   | Introduction to the Strategy for Estimating Tank Chemical and<br>Radionuclide Inventories1 |
|------|--------------------------------------------------------------------------------------------|
| 11.  | Approach3                                                                                  |
| III. | Description of the TLM Spreadsheet4                                                        |

## Appendices

| <b>A.</b>  | Glossary of Hanford Terminology | 4-1 |
|------------|---------------------------------|-----|
| <b>B</b> . | Solids Volume Per Cent          | 3-1 |
| C.         | Defined Waste List Solid Vol %  | 2-1 |
| D.         | TLM/SE Spreadsheet              | )-1 |
| E.         | Graphs                          | E-1 |

#### Abstract

This report describes a model for solids accumulation in waste tanks at Hanford. This model is known as theTank Layer Model (TLM), and applies that model to 149 single-shell tanks in the 200-East and 200-West areas at Hanford. The TLM uses the information that has been obtained on the transaction history for each tank to predict solids accumulations by two fundamentally different strategies. The first strategy is used for primary waste additions, which are waste additions from process plants direct into the waste tanks. These primary transactions are used along with solids reports for each tank to derive an average volume per cent solids for each of wastes on the Defined Waste List. Solids accumulations are then assigned to a particular Defined Waste for tanks for which solids information is missing or inconsistent.

A second strategy is used for tanks where solids accumulate as a result of evaporative concentration of supernatants. All solids that accumulate in such tanks occur after they have been designated as "bottoms" receivers and are assigned to either salt cakes or salt slurries, depending on the particular evaporator campaign that resulted in the waste volume reduction. This approach leads to seven salt cakes and two salt slurries, each of which is specified as a Defined Wastes. Such concentrates are, then, inherently averaged over the tens of millions of gallons of supernatants that were involved in each evaporator campaign.

The results of the TLM analysis are a description of each tank's solids in terms of sludge layers, salt cake, and salt slurry. The composition of each layer is described in the Hanford Defined Waste report. Although interstitial liquid is incorporated within the composition for each solids type, any residual supernatants that reside in these tanks are not described by this model. The output of the TLM, then, can only be used to predict the inventory of the sludges and saltcakes that reside within each waste tank.

v

I. Introduction to the Strategy for Estimating Tank Chemical and Radionuclide Inventories

One of the more difficult tasks involving the Hanford waste tanks is the estimation of those tanks' contents. Nevertheless, such estimates are often necessary in order to establish safety limits during intrusive activities associated with these tanks, as well as needed for a planning basis for future disposal. The Tank Layer Model (TLM) is part of a three step strategy, as shown in Fig. 1, for estimation of tank inventories. Three fundamental steps need to be performed in order to provide such estimates.

The first step is to compile a spreadsheet of qualified fill records<sup>1</sup> with information extracted from Jungfleisch-83<sup>2</sup> and Anderson-91<sup>3</sup>, and checked against quarterly summary reports by Ogden Environmental and LANL. These qualified transaction records are called the Waste Status and Transaction Record Summaries (WSTRS). The WSTRS reports, although largely representative of the waste histories of the tanks, are nevertheless incomplete in that there are many unrecorded transactions that have occurred for many tanks. Included within the WSTRS report, then, is a comparison of the tank volume that is calculated based on the fill records that are present in WSTRS with the measured volume of each tank. This comparison is made for each quarter to record any unknown waste additions or removals that may have occurred during each quarter.

Using these fill records, the second step used in this strategy is an analysis that provides a definition of the solids layers within each tank and is called the Tank Layer Model or TLM. The TLM<sup>4,</sup> is a volumetric and chronological description of tank inventory based on a defined set of waste solids layers. Each solids layer is attributed to a particular waste addition or

<sup>3</sup>Anderson, J. D. "A History of the 200 Area Tank Farms," WHC-MR-0132, June 1990.

1

<sup>&</sup>lt;sup>1</sup> (a) Agnew, S. F., et al., "Waste Status and Transaction Record Summary for the NE Quadrant" WHC-SD-WM-TI-615, Rev. 1, October 1994. (b) Agnew, S. F., et al. "Waste Status and Transaction Record Summary for the SW Quadrant, "WHC-SD-WM-TI-614, Rev. 1, October 1994. (c) Agnew, S. F., et al. "Waste Status and Transaction Record Summary for the NW Quadrant, "WHC-SD-WM-TI-669, Rev. 1, October 1994.

<sup>&</sup>lt;sup>2</sup>(a) Jungfleisch, F. M. "Hanford High-Level Defense Waste Characterization—A Status Report," RH-CD-1019, July 1980. (b) Jungfleisch, F. M. "Supplementary Information for the Preliminary Estimation of Waste Tank Inventories in Hanford Tanks through 1980," SD-WM-TI-058, June 1983. (c) Jungfleisch, F. M. "Preliminary Estimation of Waste Tank Inventories in Hanford Tanks through 1980," SD-WM-TI-057, March 1984.

<sup>&</sup>lt;sup>4</sup>(a) Brevick, C. H., et al., "Supporting Document for the Historical Tank Content Estimate for A Tank Farm," WHC-SD-WM-ER-308, Rev. 0, June 1994. Likewise, reports and numbers for each farm are as follows: AX is 309, B is 310, BX is 311, BY is 312, C is 313, S is 323, SX is 324, and U is 325. These supporting documents contain much of the detailed information for each tank farm in a concise format, all released as Rev. 0 in June 1994.

process, and any solids layers that have unknown origin are assigned as such and contribute to the uncertainty of that tank's inventory. The Tank Layer Model for each tank, then, simply associates layers of solids within each tank with a



Fig. 1. Schematic of overall strategy

waste addition or a process campaign. In order to derive an inventory of tank chemicals and radionuclides, one must provide a composition for each of these defined wastes. The TLM provides only a chronology and an order to the waste

layer volumes, and does not imply any other configuration for those layers. Thus, the lateral distribution of each layer may be and probably is quite complicated, but the TLM does not say anything about the configuration of those layers other than each layer's total volume and a chronological ordering to those volumes.

An ideal mixing model called the Supernatant Mixing Mode<sup>5</sup> (SMM) has been developed to describe the composition of each supernatant in the tanks (note that interstitial liquid is part of the solids definition, not the supernatant). This model describes a supernatant in terms of fractions of each of the Defined Waste supernatants with a corresponding total volume reduction due to active evaporation. The SMM is primarily used for definition of waste in DST's.

The third step in the strategy is to provide chemical and radiochemical definitions<sup>6</sup> for each of the Defined Waste types. The Defined Waste compositions coupled with the tank layering information provide a basis for estimation of each tank's chemical and radionuclide inventories (see Fig. 1). The inventory estimates for each tank appear in the Historical Tank Content Estimate reports for each quadrant.<sup>7</sup>

#### II. Approach

The Tank Layer Model (TLM) is derived from the Waste Status and Transaction Record Summary (WSTRS) database. The purpose of the Tank Layer Model is to predict the waste types and solids' volumes in each tank.

We have developed a solids layer model that uses the past fill history of each tank to derive an estimate of the types of solids that reside within those tanks. The Tank Layer Model (TLM) is generated by reconciling the reported solids levels for each tank from WSTRS with the solids volume per cent expected for the primary waste additions from the Defined Waste Document.<sup>8</sup> (Note that a solid's model has already been extensively used at Hanford to estimate sludge and salt cake accumulation, the results of which are reported<sup>®</sup>monthly.)

<sup>5</sup>Agnew, S. F.; Corbin, R. "Supernatant model," in preparation

<sup>6</sup>Agnew, S.F. "Hanford Site Defined Wastes: Chemical and Radionuclide Compositions,"LA-UR-94-2657 September 1994.

<sup>7</sup>(a) Brevick, C. H., et al., "Historical Tank Content Estimate of the Northeast Quadrant of the Hanford 200 East Area," WHC-SD-WM-ER-349, Rev. 0, June 1994. (b) Brevick, C. H., et al., "Historical Tank Content Estimate of the Southwest Quadrant of the Hanford 200 West Area," WHC-SD-WM-ER-352, Rev.0, June 1994. (c) Brevick, C. H., et al., "Historical Tank Content Estimate of the Northwest Quadrant of the Hanford 200 West Area," WHC-SD-WM-ER-351, Rev.0, in preparation.

<sup>8</sup> Agnew, S. F., et al., "Hanford Defined Wastes: Chemical and Radionuclide Compositions," LA-UR-94-2657

<sup>9</sup>Hanion, B. M. "Tank Farm Surveillance and Waste Status and Summary Report for November 1993, "WHC-EP-0182-68, February 1994, published monthly. Not all of the transactions that have occurred in the past are faithfully recorded by the WSTRS data set. Therefore, WSTRS is an incomplete document with many missing transactions. However, the two critical pieces of information that are used in the TLM analysis are the primary waste additions and the solids level measurements, which are well represented in WSTRS.

The missing transactions largely involve intertank transfers within WSTRS for the SST's. These missing transactions do lead to a larger uncertainty for the compositions of the concentrated products of evaporator operations, which are salt cake, salt slurry, and supernatant. We estimate that as many as 25% of all transactions are missing from this data set, with perhaps as many as 60-80% of these missing transactions being associated with the evaporator operations. Although we may be able to recover some of this information in the future, our strategy at this time incorporates these unknown transactions into uncertainties in the concentrated products of evaporator operations.

For the DST's, our WSTRS is a much better representation of all of the transactions. Therefore, we hope to resolve the solids unknowns for the DST's in terms of the SST's solids losses.

# III. Description of the TLM Spreadsheets

We create tables (App. D) that describes the solids histories for each tank with the following columns:

| Column Headings | Descriptions                                                                           |
|-----------------|----------------------------------------------------------------------------------------|
| Tank            | tank number                                                                            |
| Year            | year of last primary addition and year of solid measurement                            |
| Qtr             | quarter of last primary addition and qtr of solid measurement                          |
| Meas. solids    | reported solids from Anderson-91 in kgal                                               |
| Solids change   | calculated solids based on primary fill record or<br>difference between solids records |
| Pred layer      | kgal predicted layer now in tank                                                       |
| Layer type      | Defined Waste Type for that layer                                                      |
| Waste volume    | sumation of primary waste additions calculated for this time period                    |
| Comments        | various details of each calculation                                                    |

#### Sludge Accumulation from Primary Waste

This uncertainty for inter-tank transactions means that we differentiate between primary waste additions on the one hand, to each of which we associate a solids vol%, and precipitated salts due to concentration by evaporation, where we simply assume that the reported solids volume represents those precipitates. We begin our analysis by associating a solids volume percent (vol%) with each primary waste stream. We derive these solids vol% by observing the solids volumes reported in Anderson-91 and comparing those solids accumulations with the primary waste additions that are recorded in WSTRS, as shown in Appendix B. The result of this analysis is a solids volume percent with a range of values that we associate with the inherent variability of the process, and are shown in Appendix C for the defined waste types that are described in the Defined Waste document.

Not all of the waste types have adequate solids reports associated with them. For these waste types, we assign a nominal value based on similarity to other waste types where there exists a solids vol%, and use that nominal value in our analysis. For example, a total of 810 kgal of Hot Semi-Works waste, HS, was added to several tanks in C Farm, but these additions only constituted a small fractions of the total solids present in any of these tanks. Therefore, and we have assumed a nominal 5 vol% solids for that waste type.

Each TLM spreadsheet table shows the primary waste additions and the solids that we expect from those additions based on the characteristic vol% for that waste type. We compare this prediction with the solids level reported for the tank and indicate either an unknown gain or loss for this tank. Once a layer is "set" in the tank, its volume appears in Pred. layer and type in Layer type, thus comprising a chronological layer order from the bottom of a tank to the top, where each layer is described in terms of a volume and a type. Note that lateral variations are not accounted in this model, and therefore this model only derives an average layer thickness. We make no claims about the lateral heterogeneity of those layers.

There are two main sources for variations in the solids vol% for each waste type. First, there is an inherent variability in each process stream, which we largely attribute to process variations. Second, solids can be added to or removed from tanks by inadvertent entrainment during other supernatant transfers. In addition to these sources of variation, there are a number of other minor sources of solids changes such as compaction, subsidence following removal of interstitial liquid, and dissolution of soluble salts by later dilute waste additions. Other solids variations may be due to metathesis and other chemical reactions, such as degradation of organic complexants over time in waste tanks.

We assign a solids change to variability when it falls within the range that we have established. If a change in solids falls outside of this range, then we

attempt to associate the gain or loss of solids with a waste transfer to or from another tank, or to dissolution of soluble salts.

#### Diatomaceous Earth/Cement

Diatomaceous Earth an effective and efficient waste sorbent material was added to the following waste storage tanks BX-102 (1971), SX-113 (1972), TX-116 (1970), TX-117 (1970), TY-106 (1972) U-104 (1972). The additions of diatomaceous earth were used to immobilize residual supernatant liquid in tanks where the liquid removal by pumping was not feasible. The conversion factor in the TLM for Diatomaceous Earth (DE) is 0.16k gal/ton and Cement (CEM) or (CON) is 0.12k gal/ton. CON was added to the following BY-105 (1977), SX-103 (1965-66), SX-107 (1965), SX-108 (1965), and SX-110 (1965).

## Salt Cake Accumulation

Once a tank becomes a "bottoms" receiver, we assume from that point on and to the end of the Evaporator Campaign that any solids that accumulate are salt cake or salt slurry. Salt cake can be any one of seven different types, depending on which evaporator campaign created it. These are BSItCk (242-B), T1SItCk (early 242-T), T2SItCk (later 242-T), BYSItCk (ITS #1 and #2 in BY Farm), RSItCk (SX self-concentration), SSItCk (first 242-S), and ASItCk (first 242-A) and Table 2 describes the various evaporator campaigns that resulted in concentration of waste and precipitation of solids at Hanford. For salt cake accumulation, we assume that all of the solids that are reported are salt cake. Other evaporations included the self-concentration of REDOX waste in SX-Farm, use of REDOX-plant evaporator for tank wastes, and use of B-Plant evaporator for tank wastes.

The two later campaigns for 242-S and 242-A evaporators we have assigned as salt slurries (S2SItSIry and A2SItSIry) to differentiate these highly concentrated liquors from those of previous evaporator campaigns. Our salt slurry definitions roughly correspond to what is known as double-shell slurry or DSS, but salt slurry in fact also includes other concentrates now identified as salt cakes. The details of the TLM analysis are shown in Appendix D for SE quadrant, and the spreadsheet format is also described.

6

#### Appendix A

#### Glossary of Hanford Terminology March 1995

This is a glossary of Hanford terminology that has been compiled to aid in definition of Hanford tank "jargon". These definitions have come from so many different sources that it is difficult to name them all. A lot of these terms have come from Anderson-91, Jungfleisch-84, and from Strode-93. Where there have been conflicting uses of the same term, it is indicated, and where there is uncertainty as to an exact meaning, a "??" appears to indicate that uncertainty.

If you have any corrections/additions/deletions to this glossary, please send them to: Stephen F. Agnew, M/S J586 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, or fax to 505-667-0851.

| AC                     | air circulator (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACCEPTABLE             | Thermocouples with measured resistance value within normal limits and an indicated temperature within expected range. (term located WHC-SD-WM-TI-<br>553, Rev.0)                                                               |
| ACGIH                  | American Conference of Governmental Industrial Hygienists                                                                                                                                                                      |
| ACL                    | air circulator lines (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                    |
| ACQ                    | acquisition (term located WHC-SD-WM-TI-553, Rev 0)                                                                                                                                                                             |
| Active Drywell         | Drywell in which radiation readings of greater than 50 counts/second are detected. To be considered "active", these readings must be consistent as to depth and radiation level for repeated readings.                         |
| ADD                    | Add primary waste from process.                                                                                                                                                                                                |
| ADJ                    | Adjustment to waste amount. See also CORR, COOL, and LEAK.                                                                                                                                                                     |
| AG                     | above grade (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                             |
| AGE                    | Aging waste. See also AGING                                                                                                                                                                                                    |
| AGING                  | Aging waste. See also AGE                                                                                                                                                                                                      |
| AGING WASTE            | High level, first cycle solvent extraction waste from the PUREX plant (NCAW) (term located Tank and Surveillance and Waste Status Summary Report)                                                                              |
| AHA                    | American Industrial Hygiene Association                                                                                                                                                                                        |
| AIR LIFT<br>CIRCULATOR | The air lift circulators are installed in aging tanks to promote mixing of the supernate. By maintaining motion within the body of the liquid, the circulators minimize superheat buildup and, consequently, minimize bumping. |
| ALARA                  | as low as reasonably achievable (term located WHC-EP-0791)                                                                                                                                                                     |
| ALE                    | Arbitrary-Lagrangian-Eulerian                                                                                                                                                                                                  |

| ALE Arbitrary-Lagrangian-Eule | nan |
|-------------------------------|-----|
|-------------------------------|-----|

ANL Argonne National Laboratory (term located WHC-EP-0702, Rev 0)

- ANNULUS The annulus is the space between the inner and outer shells on DSTs. Drain channels in the insulating and/or supporting concrete carry any leakage to the annulus space where conductivity probes are installed. (term located Tank and Surveillance and Waste Status Summary Report)
- ANSI American National Standard Institute

A Plant See also PUREX-Plant CARB, CWP, and OWW

APM ammonium phosphomolybdate (term located WHC-EP-0791)

AQUELLW Aqueous liquids (term located WHC-EP-0791)

- ARM area radiation monitor
- AR Vault PSL (PUREX sludge) was sluiced from A and AX-Farms and placed here for caustic wash to remove Cesium and acid dissolution for feed to B-Plant. AR-002 (or TK-002) was slurry receiver in AR-Vault. Solids are then transferred to TK-004, acidified, and the PAS (PUREX Acidified Sludge) transferred to TK-003. Any solids left in TK-004 following acid dissolution are caustic digested and transferred to back TK-002 for the next cycle.
- ASAP As soon as possible
- ASME American Society of Mechanical Engineers
- ASTM American Society for Testing and Materials

AW NEUTRALIZED CURRENT ACID WASTE

- B B-Plant HLW. Also identifies waste returned to tanks from Sr recovery. Also used as destination, B-Plant, for Cs/Sr recovery. BiPO<sub>4</sub> ran in B-PLANT from Apr. 1945 to Oct. 1952, while Cs/Sr recovery from tank farms ran from 1967 to 1976, and Cs/Sr recovery from NCAW and CAW ran from 1967-72, and then from 1983-91. B-Plant's mission from '67 was to take the acid stream from PUREX through Cesium and Strontium recovery operations.
- CBUSTL combustible solids and liquids (term located WHC-EP-0791)
- BC TRU Solids from B-Plant Processing of CC

BCD binary code decimal

B86ON DILUTE, NON-COMPLEXED WASTE FROM B-PLANT CELL DRAINAGE

BF breather filter (term located WHC-SD-WM-ER-204, Rev.0)

BFSH B-Piant Flush

| BG          | below grade (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                             |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIPO4       | First process for separating Pu, in B-222 and U-222, 1944-56. Left U in waste.<br>See also MW, 1C, and 2C.                                                     |
| BIX         | B-Plant Ion Exchange                                                                                                                                           |
| BIXBN       | <b>??</b>                                                                                                                                                      |
| BIXRI       | ??                                                                                                                                                             |
| BL          | B-Plant low level. From '68-'76 added to AX-103, BX-101, B-101, and C-106.<br>Wash(?) waste after concentration in cell 23 (i.e. low solids). 3.6 vol% solids. |
| BLANK SPACE | Blank space indicates riser contents unknown. See also Riser (term located WHC-SD-WM-TI-553, Rev.0)                                                            |
| BLEB        | B-Plant low level evaporator bottoms                                                                                                                           |
| BLIX        | B-Plant Low Level Ion Exchange?                                                                                                                                |
| BLIXB       | B-Plant Low Level Ion Exchange bottoms?                                                                                                                        |
| BM          | bench mark (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                              |
| BN          | ??                                                                                                                                                             |
| BNW         | Battelle Northwest Laboratory Waste                                                                                                                            |
| BP          | TRU SOLIDS FROM B-PLANT PROCESSING OF PFP                                                                                                                      |
| BPDCC       | DILUTE, COMPLEXED WASTE FROM B-PLANT CESIUM PROCESSING.<br>See also CSR and BPDCC.                                                                             |
| BPDCS       | DILUTE, COMPLEXED WASTE FROM B-PLANT STRONTIUM<br>PROCESSING                                                                                                   |
| BPDCV       | DILUTE, COMPLEXED WASTE FROM B-PLANT VESSEL CLEAN-OUT                                                                                                          |
| BPFPS       | B-PLANT HIGH TRU SOLIDS FROM RETRIEVED PFP SOLIDS                                                                                                              |
| BPLCS       | DILUTE, NON-COMPLEXED WASTE FROM B-PLANT STRONTIUM<br>PROCESSING                                                                                               |
| BPLDC       | DILUTE, COMPLEXED WASTE FROM B-PLANT CESIUM PROCESSING                                                                                                         |
| BPLDN       | DILUTE, NON-COMPLEXED WASTE FROM B-PLANT CESIUM<br>PROCESSING                                                                                                  |
| BM          | Benchmark (term located SD-RE-TI-053 Rev. 8)                                                                                                                   |
| BR          | TRU Solids from B-Plant Processing - NCRW                                                                                                                      |

**B-Plant Pretreated Solids** BS A tank bump occurs when solids overheat in the lower portion of the tank. The BUMPING, TANK hot solids are mixed with the cooler fluid either by operation of the airlift BUMP circulators (ACLs) or by natural means. The hot solids rapidly transfer heat to the liquid, some of which quickly vaporizes. The sudden pressurization caused by vapor generation is called a "bump". DILUTE, NON-COMPLEXED WASTE FROM B-PLANT VESSEL CLEAN-OUT BVCLN BAW black and white CAM continuous air monitor CARB CARBONATED WASTE-same as OWW. See also A-Plant, PUREX Plant. CWP, and OWW. CAS Cascade, this process filled three or more tanks with one pump by using overflow lines. Normal use was with a sequence of tanks numbers 101, 102, 103, or 110, 111, 112. See also SET and END. CASCADE Eleven of the Single-Shell Tank Farms (all except the AX-Tank Farm), were equipped w/ overflow lines between tanks. The tanks were connected in series and were placed at different elevations creating a down hill gradient for liquids to flow from one tank to another. See also CAS, SET, and END. (See also WSTRS Doc., Cascade Transfer Sect. IV. NE WHC-SD-WM 615, NW WHC-SD-WM-669, SW WHC-SD-WM-614) CASS Computer Automated Surveillance System (term located WHC-SD-WM-TI-553. Rev 0) CAW Current Acid Waste-this is PUREX acid waste, also called HAW or IWW. See also HAW, IWW, and PAW. ?? CB CC Complexant Concentrate. Term refers to concentrates of solutions that have TOC's greater than 10 g/L. Usually associated with EDTA and HEDTA salts. See also CCPLX and CPLX. B-PLANT HIGH TRU SOLIDS FROM RETRIEVED COMPLEXED CCGL CONCENTRATE DILUTE, NON-COMPLEXED WASTE FROM RETRIEVED COMPLEXED CCGR CONCENTRATE Complexant Concentrate. See also CC and CPLX. CCPLX **Concentrated Customer Waste** CCW counter-clockwise ref. LA-UR-92-3196 CCW ?? CD

| CDE      | committed effective dose equivalent (term located WHC-EP-0702, Rev 0)                                                                                                                                                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CDF      | TRAC Composition Data File or Transaction Flag Key-unit volume assumed to make stream active.                                                                                                                                               |
| CE       | Evaporator Concentrate                                                                                                                                                                                                                      |
| CE       | crown ether (term located WHC-EP-0791)                                                                                                                                                                                                      |
| Cell 23  | Waste from cell 23 at B-Plant. Cell 23 contained an evaporator and was used not only during B-Plant operations, but to reduce tanked waste as well.                                                                                         |
| CEM      | Concrete. See also CON.                                                                                                                                                                                                                     |
| CF       | Cesium Feed                                                                                                                                                                                                                                 |
| CH4      | methane (term located WHC-EP-0702, Rev 0)                                                                                                                                                                                                   |
| CHP      | cascade heel pit (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                     |
| CWHT     | Concentrated Waste Holding Tank                                                                                                                                                                                                             |
| C layer  | convective layer                                                                                                                                                                                                                            |
| CLEAN 31 | CLEAN Option HLW stream (term located WHC-EP-0791)                                                                                                                                                                                          |
| CLELLW   | CLEAN Option LLW stream (term located WHC-EP-0791)                                                                                                                                                                                          |
| CMPO     | N-diisobutylcarbamoyimethylphosphine oxide (term located WHC-EP-0791)                                                                                                                                                                       |
| CON      | Concrete. BY-105 (1977), SX-103 (1965-66), SX-107 (1965), SX-108 (1965),<br>and SX-110 (1965). See also CEM.                                                                                                                                |
| COND     | Condensate-see also EVAP, and EB.                                                                                                                                                                                                           |
| COND     | Condition (term located WHC-SD-WM-TI-553, Rev 0)                                                                                                                                                                                            |
| COOL     | Change in waste volume due to cooling? See also ADJ, COOL, CORR, and LEAK.                                                                                                                                                                  |
| CORR     | Correction to waste amount. See also ADJ, COOL, and Leak.                                                                                                                                                                                   |
| CP       | condenser pit (def from WHC-SD-WM-ER-204, Rev. 0)                                                                                                                                                                                           |
| CP       | Concentrated Phosphate waste (from 100 N-Reactor decontamination). See also N.                                                                                                                                                              |
| C-Plant  | Strontium Semi-Works. Called C-Plant or Hot Semi-Works earlier, was pilot<br>for both REDOX and PUREX, Jul. 1952 to Jul. 1956. Then reconfigured for<br>Strontium Recovery Pilot Plant from July 1960 to July 1967. See also SSW<br>and HS. |
| CPLX     | Complexed Waste. See also CC, and CCPLX                                                                                                                                                                                                     |

•

.

|   | CPP                                                                                | cascade pump pit (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | CPU                                                                                | central processing unit (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | CRIB                                                                               | Ground site for low level supernatants (from tanks) or condensates (from evaporators). NW (T-105 - T-107, T-018, T-021 - T-023, T-025, T-026, T-032, TY-CRIB, TY-1) and NE (B-##, S-##, T-##, A-008, A-024, B-007, B-008, B-014, B-016, B-018, B-035, B-037, B-040, B-042, and B-049.                                                                                                                                                                                                                                                                                                                                                                            |
|   | CRT                                                                                | cathode ray tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | CR Vault                                                                           | Facility located adjacent to C Farm, used for scavenging campaign following<br>Uranium recovery, 1952-58. Ferrocyanide was added to tank supernatants in<br>CR-Vault, and then the slurry was returned to C-Farm for settling, forming in-<br>farm sediments.                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | CSFD                                                                               | Cesium Feed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ř | CSIX                                                                               | cesium ion exchange (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | CSKW                                                                               | ??                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | CSP                                                                                | cascade sluice pit (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | CSR                                                                                | Tank supernatant was sent to B-Plant for Cesium recovery using C-105 as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                    | from B-Plant. See also IX, and BPDCC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | CST                                                                                | from B-Plant. See also IX, and BPDCC.<br>Caustic Solution, 0.01 M NaOH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | CST<br>CSWLE                                                                       | from B-Plant. See also IX, and BPDCC.<br>Caustic Solution, 0.01 M NaOH.<br>COMPLEXED SALT WELL LIQUID EAST AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| · | CST<br>CSWLE<br>CSWLW                                                              | staging tank. From 1967-76, 21,724 kgal was sent to and 26,290 kgal returned<br>from B-Plant. See also IX, and BPDCC.<br>Caustic Solution, 0.01 M NaOH.<br>COMPLEXED SALT WELL LIQUID EAST AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | CST<br>CSWLE<br>CSWLW<br>CTW                                                       | staging tank. From 1967-76, 21,724 kgal was sent to and 26,290 kgal returned<br>from B-Plant. See also IX, and BPDCC.<br>Caustic Solution, 0.01 M NaOH.<br>COMPLEXED SALT WELL LIQUID EAST AREA<br>COMPLEXED SALT WELL LIQUID WEST AREA<br>??Caustic waste for makeup??                                                                                                                                                                                                                                                                                                                                                                                          |
|   | CST<br>CSWLE<br>CSWLW<br>CTW<br>CVR                                                | staging tank. From 1967-76, 21,724 kgal was sent to and 26,290 kgal returned<br>from B-Plant. See also IX, and BPDCC.<br>Caustic Solution, 0.01 M NaOH.<br>COMPLEXED SALT WELL LIQUID EAST AREA<br>COMPLEXED SALT WELL LIQUID WEST AREA<br>??Caustic waste for makeup??<br>metal cover plate (term located SD-RE-TI-053 Rev. 8)                                                                                                                                                                                                                                                                                                                                  |
|   | CST<br>CSWLE<br>CSWLW<br>CTW<br>CVR<br>CVS                                         | staging tank: From 1967-76, 21,724 kgal was sent to and 26,290 kgal returned<br>from B-Plant. See also IX, and BPDCC.<br>Caustic Solution, 0.01 M NaOH.<br>COMPLEXED SALT WELL LIQUID EAST AREA<br>COMPLEXED SALT WELL LIQUID WEST AREA<br>??Caustic waste for makeup??<br>metal cover plate (term located SD-RE-TI-053 Rev. 8)<br>Compostion Variability Study (term located WHC-EP-0791)                                                                                                                                                                                                                                                                       |
|   | CST<br>CSWLE<br>CSWLW<br>CTW<br>CVR<br>CVR<br>CVS<br>CW                            | staging tank. From 1967-76, 21,724 kgal was sent to and 26,290 kgal returned<br>from B-Plant. See also IX, and BPDCC.<br>Caustic Solution, 0.01 M NaOH.<br>COMPLEXED SALT WELL LIQUID EAST AREA<br>COMPLEXED SALT WELL LIQUID WEST AREA<br>??Caustic waste for makeup??<br>metal cover plate (term located SD-RE-TI-053 Rev. 8)<br>Composition Variability Study (term located WHC-EP-0791)<br>Cladding Waste                                                                                                                                                                                                                                                    |
| • | CST<br>CSWLE<br>CSWLW<br>CTW<br>CVR<br>CVR<br>CVS<br>CW                            | staging tank. From 1967-76, 21,724 kgal was sent to and 26,290 kgal returned<br>from B-Plant. See also IX, and BPDCC.<br>Caustic Solution, 0.01 M NaOH.<br>COMPLEXED SALT WELL LIQUID EAST AREA<br>COMPLEXED SALT WELL LIQUID WEST AREA<br>??Caustic waste for makeup??<br>metal cover plate (term located SD-RE-TI-053 Rev. 8)<br>Compostion Variability Study (term located WHC-EP-0791)<br>Cladding Waste<br>Cladding Waste PUREX. See also A-Plant, PUREX Plant, and OWW.                                                                                                                                                                                    |
|   | CST<br>CSWLE<br>CSWLW<br>CTW<br>CVR<br>CVR<br>CVS<br>CW<br>CWP<br>CWP/Zr           | staging tank. Prom 1967-76, 21,724 kgal was sent to and 26,290 kgal returned<br>from B-Plant. See also IX, and BPDCC.<br>Caustic Solution, 0.01 M NaOH.<br>COMPLEXED SALT WELL LIQUID EAST AREA<br>COMPLEXED SALT WELL LIQUID WEST AREA<br>??Caustic waste for makeup??<br>metal cover plate (term located SD-RE-TI-053 Rev. 8)<br>Compositon Variability Study (term located WHC-EP-0791)<br>Cladding Waste<br>Cladding Waste PUREX. See also A-Plant, PUREX Plant, and OWW.<br>Cladding waste from PUREX 1966-70 that used Zirflex process on Zircaloy<br>clad fuel elements. See also PD and NCRW.                                                            |
|   | CST<br>CSWLE<br>CSWLW<br>CTW<br>CVR<br>CVR<br>CVR<br>CVS<br>CW<br>CWP<br>CWP/Zr    | staging tank: Prom 1967-76, 21, 724 kgal was sent to and 26,290 kgal returned<br>from B-Plant. See also IX, and BPDCC.<br>Caustic Solution, 0.01 M NaOH.<br>COMPLEXED SALT WELL LIQUID EAST AREA<br>COMPLEXED SALT WELL LIQUID WEST AREA<br>??Caustic waste for makeup??<br>metal cover plate (term located SD-RE-TI-053 Rev. 8)<br>Compostion Variability Study (term located WHC-EP-0791)<br>Cladding Waste<br>Cladding Waste PUREX. See also A-Plant, PUREX Plant, and OWW.<br>Cladding waste from PUREX 1966-70 that used Zirflex process on Zircaloy<br>clad fuel elements. See also REDOX and R.                                                           |
|   | CST<br>CSWLE<br>CSWLW<br>CTW<br>CVR<br>CVR<br>CVS<br>CW<br>CWP<br>CWP/Zr<br>CWP/Zr | staging tank. From 1967-76, 21,724 kgal was sent to and 26,290 kgal returned<br>from B-Plant. See also IX, and BPDCC.<br>Caustic Solution, 0.01 M NaOH.<br>COMPLEXED SALT WELL LIQUID EAST AREA<br>COMPLEXED SALT WELL LIQUID WEST AREA<br>??Caustic waste for makeup??<br>metal cover plate (term located SD-RE-TI-053 Rev. 8)<br>Composition Variability Study (term located WHC-EP-0791)<br>Cladding Waste<br>Cladding Waste PUREX. See also A-Plant, PUREX Plant, and OWW.<br>Cladding waste from PUREX 1966-70 that used Zirflex process on Zircaloy<br>clad fuel elements. See also REDOX and R.<br>DILLITE, COMPLEXED (MIXTURE) HOT SEMI-WORKS TRU SOLIDS |

| 2D            | two-dimensional                                                                                                                                                       |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3D            | three-dimensional                                                                                                                                                     |
| D             | TRAC Transaction Flag Key-Amount by difference.                                                                                                                       |
| DACS          | data acquisition control system (term located WHC-SD-WM-TI-553, Rev 0)                                                                                                |
| DAS           | data acquisition system                                                                                                                                               |
| DBA           | design basis accident                                                                                                                                                 |
| DC            | Dilute Complexed waste characterized by a high content of organic carbon<br>including organic complexants: see also, EDTA, HEDTS, and IDA                             |
| D&D           | decontamination and decommissioning (term located WHC-EP-0791)                                                                                                        |
| DCH 18-Cr-6   | dicyclohexano 19-crown-6 ether (term located WHC-EP-0791)                                                                                                             |
| DCS           | Dilute Caustic Solution                                                                                                                                               |
| DDT           | deflagration to detonation transition                                                                                                                                 |
| DE            | Diatomaceous Earth added to BX-102 (1971), SX-113 (1972), TX-116 (1970), TX-117 (1970), TY-106 (1972) U-104 (1972).                                                   |
| DEF           | 77                                                                                                                                                                    |
| DF            | decontamination factor (term located WHC-EP-0791)                                                                                                                     |
| DIL           | Dilute Feed for Evaporator input. Interstitial liquid that is not held in place by<br>capillary forces, and will therefore migrate or move by gravity. See also DILFD |
| DILFD         | Dilute Feed. See also DIL.                                                                                                                                            |
| DISS          | dissolver (term located WHC-EP-0791)                                                                                                                                  |
| Diversion Box | A below-grade concrete enclosure containing the remotely maintained jumpers<br>and spare nozzles for diversion of waste solution to storage tank farms.               |
| DN            | Dilute Non-Complexed Waste (i.e. contains no complexants) defined as waste with TOC <1wt% (10 g/L). See also DN/PD, DN/PT, PFP, PRF, TRU, Z, and 224                  |
| DN/PD         | DN with P TRU solids. See also DN, DN/PT, P, PFP, PRF, TRU, Z, and 224.                                                                                               |
| DN/PT         | DN with PFP TRU solids. See also DN, DN/PD, P, PFP, PRF, TRU, Z, and 224.                                                                                             |
|               |                                                                                                                                                                       |
| DOD           | US Department of Defense                                                                                                                                              |

••

| DOE/RL                             | DOE/Richland (Field Office)                                                                                                                                                                                                                                                                                                               |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Double-Shell<br>Slurry (DSS)       | Double-Shell Slurry (from EOFY 77 inventory?). This waste is a concentrate of DSSF, but with a TOC<10g/L (<1wt% TOC is NC). Waste that exceeds the sodium aluminate saturation boundary in the evaporator without exceeding receiver tank composition limits. DSS is considered a solid. See also DSS and DSSF (Double-Shell Slurry Feed) |
| Double-Shell<br>Slurry Feed (DSSF) | Waste concentrated just before reaching the Sodium Aluminate saturation<br>boundary in the evaporator without exceeding receiver tank composition limits.<br>This form is not as concentrated as DSS. See also DSS and DSSF                                                                                                               |
| DOUBLE-SHELL<br>TANK               | The newer one million gallon underground waste storage tanks consisting of a<br>concrete shell and two concentric carbon steel liners with an annular space<br>between the liners.                                                                                                                                                        |
| DP                                 | Dilute Phosphate Waste                                                                                                                                                                                                                                                                                                                    |
| DP                                 | differential pressure (term located LA-UR-92-3196 Rev 0)                                                                                                                                                                                                                                                                                  |
| DP                                 | distributor pit (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                    |
| DRCVR                              | Dilute Receiver Tank                                                                                                                                                                                                                                                                                                                      |
| DRYWELL                            | A steel casing, generally 6 inches in diameter, drilled into the ground to various depths, and used to insert monitoring instruments for measuring the presence of radioactivity or moisture content. (term located Tank and Surveillance and Waste Status Summary Report)                                                                |
| DSS                                | Double Shell Slumy (from EOFY 77 inventory?). This waste is a concentrate of DSSF, but with a TOC<10g/L (<1wt% TOC is NC).                                                                                                                                                                                                                |
| DSSF                               | Double Shell Slurry Feed                                                                                                                                                                                                                                                                                                                  |
| DST                                | double-shell tank (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                              |
| DTPA                               | diethylene-triamine-penta-acetic acid (term located WHC-EP-0791)                                                                                                                                                                                                                                                                          |
| DUMM                               | Dummy Waste. See also Dummy.                                                                                                                                                                                                                                                                                                              |
| DUMMY                              | Dummy Waste. See also DUMM                                                                                                                                                                                                                                                                                                                |
| DW                                 | Decontamination Waste                                                                                                                                                                                                                                                                                                                     |
| DWBIX                              | DECONTAMINATION WASTE AND B-PLANT ION EXCHANGE                                                                                                                                                                                                                                                                                            |
| E                                  | Transaction Flag Key-Waste transferred through evaporator.                                                                                                                                                                                                                                                                                |
| E                                  | emergency                                                                                                                                                                                                                                                                                                                                 |
| E                                  | east (term from WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                                  |
| E-Stop                             | emergency stop                                                                                                                                                                                                                                                                                                                            |

.

•

| EAC       | energy absorption capacity                                                                                                          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| EB        | Evaporator Bottoms. See also COND and EVAP.                                                                                         |
| EDE       | effective dose equivalent                                                                                                           |
| EDTA      | ethylenediaminetetraacetic acid (term located WHC-EP-0791). See also, DC, HEDTA, and IDA                                            |
| ËF        | Evaporator Feed                                                                                                                     |
| EFD       | Evaporator Feed Dilute                                                                                                              |
| EGR       | episodic gas release (term located WHC-EP-0702, Rev 0)                                                                              |
| ELEVATION | surveyed at riser flange (term located SD-RE-TI-053 Rev. 8)                                                                         |
| END       | Disconnect Cascaded Tanks. See also CAS, and SET.                                                                                   |
| EP        | enclosure pit (term located WHC-SD-WM-ER-204, Rev.0)                                                                                |
| EPRI      | Electric Power Research Institute                                                                                                   |
| ERPG      | emergency response planning guideline                                                                                               |
| ERDA      | Energy Research and Development Administration                                                                                      |
| ES&H      | Environment, Safety, and Health                                                                                                     |
| ESPIP     | Efficient Separations and Process Integrated Program (term from WHC-EP-<br>0791)                                                    |
| EV        | Evaporation                                                                                                                         |
| EVAP      | EVAPORATOR LOSSES                                                                                                                   |
| EVAP      | Evaporator connected to tank. See also COND and EB.                                                                                 |
| EVAPF     | DILUTE, NON-COMPLEXED WASTE FROM EVAPORATOR PAD FLUSH                                                                               |
| EVFD      | Evaporator Feed Tank                                                                                                                |
| EVS       | Partial neutralization in 242-S Evaporator.                                                                                         |
| EVT       | HEDTA destruction in 242-B or 242-T evaporators.                                                                                    |
| F         | Food Instrument Company (FIC) Automatic Surface Level Gauge (term located<br>Tank and Surveillance and Waste Status Summary Report) |
| FAILED    | Thermocouples with either open circuits or loop resistance. (term located WHC-SD-WM-TI-553, Rev.0)                                  |
| F/B       | flange with bale (term from WHC-SD-WM-ER-204, Rev.0)                                                                                |

-

.

·

•

-----

.

| FCT                                                     | flux-corrected transport                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FD                                                      | Feed Dilute                                                                                                                                                                                                                                                                                                                                                                    |
| FDC                                                     | functional design criteria                                                                                                                                                                                                                                                                                                                                                     |
| FeCN                                                    | Ferrocyanide wastes created during a scavenging campaign in 1953-57. See also SCAV, P00, T00, PFeCN1, PFeCN2, and TFeCN                                                                                                                                                                                                                                                        |
| FEM                                                     | finite-element method                                                                                                                                                                                                                                                                                                                                                          |
| FFTF                                                    | Fast Flux Test Facility                                                                                                                                                                                                                                                                                                                                                        |
| FIC                                                     | A Food Instrument Corporation Automatic Liquid Level Gauge based on a conductivity probe. At Hanford they are electrically connected to a computer for data transmission, analysis, and reporting. Local readings may also be obtained from a dial. (term located Tank and Surveillance and Waste Status Summary Report)                                                       |
| FIRST AND<br>SECOND CYCLE<br>DECONTAMINATIO<br>N WASTES | Waste contained 10 percent of the original fission product activity and 2 percent of the product. By-product cake solution was mixed with product waste and neutralized with 50 percent caustic. This waste contained a mixture of suspended solids, hydroxides, carbonate and phosphate, scavenger metals, and chromium, iron and sodium, silicofluoride. See also 1C and 2C. |
| F/L                                                     | flange with lead (term fromWHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                                                            |
| FIC                                                     | Automatic liquid level Sensor - tape with weight (term located WHC-SD-WM-<br>TI-553, Rev 0)                                                                                                                                                                                                                                                                                    |
| FLSH                                                    | Flush water.                                                                                                                                                                                                                                                                                                                                                                   |
| FM                                                      | flow meter (term located LA-UR-92-3196 Revised)                                                                                                                                                                                                                                                                                                                                |
| FM-approved                                             | factory mutual-approved (term located LA-UR-92-3196 Revised)                                                                                                                                                                                                                                                                                                                   |
| FP                                                      | Fission Product Waste. Cs and Sr recovery began in 222-B in 1967. Cs was removed from PUREX SU (PAW) and Sr from PUREX SL (PAS), and both from Acidic Waste.                                                                                                                                                                                                                   |
| FTIR                                                    | Fourier transform infrared (term located WHC-EP-0702, Rev 0)                                                                                                                                                                                                                                                                                                                   |
| FV                                                      | field verify                                                                                                                                                                                                                                                                                                                                                                   |
| GA                                                      | Gain to tank                                                                                                                                                                                                                                                                                                                                                                   |
| GAS                                                     | SLURRY GROWTH AS A RESULT OF GAS GENERATION                                                                                                                                                                                                                                                                                                                                    |
| GC                                                      | gas chromatograph (term located LA-UR-92-3196 Revised)                                                                                                                                                                                                                                                                                                                         |
| GIT                                                     | Georgia Institute of Technology (term located WHC-EP-0702, Rev 0)                                                                                                                                                                                                                                                                                                              |

| GOOD                | Indicated temperature compares favorable to the temperature measured by another thermocouple in a Liquid Observation Well. (term located WHC-SD-WM-TI-553, Rev.0) |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GRD                 | riser at grade (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                             |
| GRE                 | gas release event (term located WHC-EP-0702, Rev 0)                                                                                                               |
| GROUP               | A group of tanks where ITS averaged the supernatant phases. See also ITS.                                                                                         |
| GROUT               | OUTFLOW TO THE GROUT FACILITY                                                                                                                                     |
| GRTFD               | Grout Feed Tank                                                                                                                                                   |
| GTCC                | greater than Class C (term fromWHC-EP-0791)                                                                                                                       |
| GUNITE              | A building material consisting f a mixture of cement, sand, and water that is sprayed onto a mold.                                                                |
| H <sub>2</sub>      | Hydrogen (term located WHC-EP-0702, Rev 0)                                                                                                                        |
| H2O                 | Water. See also WTR.                                                                                                                                              |
| HASP                | Health and Safety Plan                                                                                                                                            |
| HAW .               | Aging waste from PUREX/PFM Processing NPR Nuclear Fuel. See also CAW, IVWV, NCAW, and PAW.                                                                        |
| HazOP               | hazards and operability study                                                                                                                                     |
| HDRL                | Hanford Defense Residual Liquid                                                                                                                                   |
| HEAT                | A tank correction. See also CORR, COOL, and LEAK.                                                                                                                 |
| HEDTA               | N-(2-hydroxyethyl)ethylene (term located WHC-EP-0702, Rev 0)                                                                                                      |
| HÉPA                | high-efficiency particulate air (term located WHC-EP-0702, Rev 0)                                                                                                 |
| нні                 | Health Hazard Index (term fromWHC-EP-0791)                                                                                                                        |
| HIGH LEVEL<br>WASTE | Waste from the fuel reprocessing operations in separations plants. (term located LA-UR-92-3196 Revised)                                                           |
| нј                  | heel jet (term fromWHC-SD-WM-ER-204, Rev.0)                                                                                                                       |
| HLO                 | Hanford Lab Operations Waste                                                                                                                                      |
| HLW                 | High Level Waste-generic for all Hanford Tank Wastes.                                                                                                             |
| HP                  | heel pit (term from/WHC-SD-WM-ER-204, Rev.0)                                                                                                                      |
| HMS                 | Hanford Meteorological Station                                                                                                                                    |

| •             |          |                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •             | HMS/TRAC | hydrogen mixing study/transient reactor analysis code (term located LA-UR-<br>92-3196 Revised)                                                                                                                                                                                                                                                                              |
| $\overline{}$ | HOT-SEMI | See also HS, and SSW.                                                                                                                                                                                                                                                                                                                                                       |
|               | HS       | Hot Semi-Works. A pilot facility that had a variety of operations. See also C-<br>Plant, and SSW.                                                                                                                                                                                                                                                                           |
|               | HSA      | Hanford Strategic Analysis (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                                       |
|               | HTWRS    | Hanford tank Waste Remediation System                                                                                                                                                                                                                                                                                                                                       |
|               | HVAC     | heating, ventilating, and air conditioning                                                                                                                                                                                                                                                                                                                                  |
|               | Н₩√₽     | DILUTE, NON-COMPLEXED WASTE FROM THE VITRIFICATION PLANT<br>(term fromWHC-EP-0791)                                                                                                                                                                                                                                                                                          |
|               | VO       | input-output (term located LA-UR-92-3196 Revised)                                                                                                                                                                                                                                                                                                                           |
|               | 185      | Tank Isolated and Stabilized                                                                                                                                                                                                                                                                                                                                                |
|               | IC       | Synonym (misspelling?) for 1C-1st cycle decontamination waste-BiPO4. See also MW, 2c, BiPO4                                                                                                                                                                                                                                                                                 |
|               | ICE      | Implicit Continuous Eulerian (term located LA-UR-92-3196 Revised)                                                                                                                                                                                                                                                                                                           |
| $\overline{}$ | ICEBC    | ?? (1st cycle evaporator bottoms concentrate??)                                                                                                                                                                                                                                                                                                                             |
|               | ICF      | Consolidated Incinerator Facility (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                                |
|               |          | DILUTE NON-COMPLEXED WASTE FROM TERMINAL CLEANOUT.                                                                                                                                                                                                                                                                                                                          |
|               | IDA      | iminodiacetate. See also, DC, EDTA, and HEDTA.                                                                                                                                                                                                                                                                                                                              |
|               | IDEF     | Integrated Computer-Aided Manufacturing (ICAM) Definition (Language) (term<br>located WHC-EP-0791)                                                                                                                                                                                                                                                                          |
|               | IDLH     | imminently (or immediately) dangerous to life or health (term located LA-UR-<br>92-3196 Revised)                                                                                                                                                                                                                                                                            |
|               | IH       | instrument house (term fromWHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                                                         |
|               | 8        | Interim Isolated. The administrative designation reflecting the completion of the physical effort required to minimize the addition of liquids into an inactive storage tank, process vault, sump, catch tank, or diversion box. In June 1993, Interim Isolation was replaced by Intrusion Prevention. (term located Tank and Surveillance and Waste Status Summary Report) |
|               | INEL     | Idaho National Engineering Laboratory (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                            |
|               | INST     | CHANGE IN TANK LEVEL DUE TO CHANGE IN INSTRUMENTATION                                                                                                                                                                                                                                                                                                                       |
|               |          |                                                                                                                                                                                                                                                                                                                                                                             |
| 1 ma 1        |          |                                                                                                                                                                                                                                                                                                                                                                             |

•

•

~

.

.

,

| Interstitial Liquid<br>Levei (ILL) | Liquid that resides in the voids/interstices of the solids.                                                                                                                                                                                                                              |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INTRUSION MODE<br>FIC SETTING      | The FIC probe is positioned a short distance above the waste surface. If the surface level of the waste in the tank increases, thereby touching the probe tip, a pointive indication is received.                                                                                        |
| INTRUSION<br>PREVENTION            | This is an administrative designation reflecting the completion of the physical effort required to minimize the addition of liquid into an inactive storage tank, process vault, catch tank, sump, or diversion box, (term located Tank and                                              |
| (IP)                               | Surveillance and Waste Status Summary Report) See also IP.                                                                                                                                                                                                                               |
| IP                                 | instrument house (term fromWHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                      |
| IP                                 | Intrusion Prevention.                                                                                                                                                                                                                                                                    |
| ISO                                | Tank is Interim-Isolated                                                                                                                                                                                                                                                                 |
| ISV                                | in-situ vitrification (term located WHC-EP-0791)                                                                                                                                                                                                                                         |
| ITS                                | In-Tank Solidification-Program using steam evaporators inside of certain tanks<br>on BY-Farm. ITS#1 ran 1965-70 in BY-102 (a pilot demonstration was also run<br>in BY-101) and ITS#2 ran 1968-74 in BY-112. During 1971-74, ITS#1 used as<br>cooler instead of a heater. See also GROUP |
| <b>WW</b>                          | INORGANIC WASH WASTE TO SST-same as P or NCAW. Refers to HAW or PAW. See also CAW, HAW, NCAW, and PAW                                                                                                                                                                                    |
| IX                                 | Ion Exchange. Identifies waste returned from Cs recovery. See also CSR, and BPDCC.                                                                                                                                                                                                       |
| IXROW                              | ??Ion-Exchange REDOX Organic Wash??                                                                                                                                                                                                                                                      |
| JEG                                | joint evaluation group (term located LA-UR-92-3196 Revised)                                                                                                                                                                                                                              |
| JET PUMP                           | A modified commercially available low capacity jet pump used as a salt well<br>pump.                                                                                                                                                                                                     |
| KNUCKLE                            | Point where the side wall and the bottom curved surface of a tank meet.                                                                                                                                                                                                                  |
| LaF                                | Lanthanum Fluoride waste generated in Plutonium Finishing Plant Operation from 1945-??. See also 224-F.                                                                                                                                                                                  |
| LANCE                              | OUT FLOW DUE TO LANCING OF TANK                                                                                                                                                                                                                                                          |
| LANH                               | heavy lanthanides (term located WHC-EP-0791)                                                                                                                                                                                                                                             |
| LANL                               | Los Alamos National Laboratory                                                                                                                                                                                                                                                           |
| LANL                               | light lanthanides (term located WHC-EP-0791)                                                                                                                                                                                                                                             |
| LATERALS                           | Horizontal dry well under A-Farm and certain SX-Farm waste storage tanks.<br>(term located Tank and Surveillance and Waste Status Summary Report)                                                                                                                                        |

| - | LB                                  | Inser top has plate flange with lifting bale - possible concrete plug under (term located SD-RE-TI-053 Rev. 8)             |
|---|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|   | LE                                  | lead encasement (term fromWHC-SD-WM-ER-204, Rev.0)                                                                         |
|   | LEAK                                | Tank leak volume. See also ADJ, COOL, and CORR.                                                                            |
|   | LEAK DETECTOR                       | fixed liquid level sensor - tape with weight (term located SD-RE-TI-053 Rev. 8)                                            |
|   | LEAK DETECTION<br>PIT               | Collection point for any leakage fro AM-Farm Tanks. The pits are equipped with radiation and liquid detection instruments. |
|   | LEL                                 | lower explosive limit (term located WHC-EP-0702, Rev 0)                                                                    |
| · | LETF                                | LIQUID EFFLUENT TREATMENT FACILITY FROM N REACTOR.                                                                         |
|   | LFL                                 | lower flammability limit (term located WHC-EP-0702, Rev 0)                                                                 |
|   | LIQUID<br>OBSERVATION<br>WELL (LOW) | Tank Leak Volume. See also ADJ, COOL, and CORR.                                                                            |
|   | uт                                  | automatic liquid indicator tape (term located SD-RE-TI-053 Rev. 8)                                                         |
|   | ш                                   | manual liquid level indicator (term located SD-RE-TI-053 Rev. 8)                                                           |
|   | LLR                                 | liquid level reel (term located WHC-SD-WM-ER-204, Rev.0)                                                                   |
| · | LLR                                 | manual liquid level sensor - tape with weight (term located SD-RE-TI-053 Rev. 8)                                           |
|   | LLW -                               | low-level waste (term fromWHC-EP-0791)                                                                                     |
|   | LO                                  | Loss from tank. (term fromWHC-SD-WM-ER-204, Rev.0)                                                                         |
|   | LOW                                 | liquid observation well                                                                                                    |
|   | LUNC                                | DILUTE, NON-COMPLEXED WASTE FROM UNC FUELS FABRICATION<br>FACILITY                                                         |
|   | LW                                  | Laboratory Waste                                                                                                           |
|   | L222S                               | 222S Lab Dilute Non-Complexed Waste                                                                                        |
|   | L3A4A                               | Dilute Non-Complexed Laboratory Wastes from 300 and 400 areas.                                                             |
|   | M                                   | Manual Tape Surface Level Gauge (term located Tank and Surveillance and Waste Status Summary Report)                       |
|   | MAB                                 | maximum allowable burp (term located LA-UR-92-3196 Revised)                                                                |

4

\_\_\_\_

. -

· \_

- MARGINAL Thermocouple with higher than normal (0.5 ohms to 20 ohms depending on length) loop resistance, higher than normal resistance in one lead to ground, or having some other abnormality, e.g. inconsistent resistance measurements. (term located WHC-SD-WM-TI-553, Rev.0) MAWB maximum allowable window burb (term located LA-UR-92-3196 Revised) MAXSPD maximum speed parameters (term located LA-UR-92-3196 Revised) Motor Control Center (term located LA-UR-92-3196 Revised) MCC MEB maximum expected burp (term located LA-UR-92-3196 Revised) Metal Waste Waste from the extraction containing all the Uranium, approximately 90% of the original fission product activity, and approximately 1% of the product. This waste was brought just to the neutral point with 50% caustic and then treated
  - with and excess of sodium carbonate. This procedure yielded almost completely soluble waste at a minimum total volume. The exact composition minimum total volume. The exact composition of the carbonate compounds was not known but was assumed to be a Uranium Phosphate Carbonate mixture.
- MIE minimum ignition energy (term located WHC-EP-0702, Rev 0)
- MIT multifunction instrument tree (term located\_WHC-SD-WM-TI-553, Rev 0)
- MJTG Mitigation Joint Test Group (term located LA-UR-92-3196 Revised)
- MOS metal-oxide semiconductor (term located LA-UR-92-3196 Revised)
- MPR multiport riser (term located LA-UR-92-3196 Revised)

MS mass spectrometer (term located LA-UR-92-3196 Revised)

MW Metal Waste from BiPO4. 90% of FP, all of U, 1% of Pu. See also1C, and 2C.

MW maximum window (term located LA-UR-92-3196 Revised)

MWB maximum window burp (term located LA-UR-92-3196 Revised)

MWF Metal Waste Feed? Set to water in TRAC.

N N-Reactor waste. See also CP.

N north (term fromWHC-SD-WM-ER-204, Rev.0)

N2 Nitrogen

NCBUSTS noncombustible solids (term located WHC-EP-0791)

NC layer nonconvective layer (term located LA-UR-92-3196 Revised)

| NCAW                                                             | Neutralized Current Acid Waste primary HLW stream from PUREX process.<br>See also CAW, HAW, IWW, and PAW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NCPLEX                                                           | Non-Complexed Waste. See also NCPLX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NCPLX                                                            | Non-Complexed Waste term applied to all Hanford Site liquors not identified as complexed. See also NCPLEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NCRW                                                             | Neutralized Cladding Removal WasteSame as CWP/Zr. See also CWP/Zr, and PW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NDAA                                                             | National Defense Authorization Act (term located WHC-EP-0702, Rev 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NE                                                               | northeast quadrant of tank (term fromWHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NEC                                                              | National Electrical Code (term located LA-UR-92-3196 Revised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NEPA                                                             | National Environmental Policy Act (term located WHC-EP-0702, Rev 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NFPA                                                             | National Fire Protection Association (term located LA-UR-92-3196 Revised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Neutralized PUREX<br>Acid Waste                                  | The original plant in 1956 neutralized all of the high-level waste and sent it to<br>the A-241 Tank Farm. As fission product recovery started, a portion of the<br>waste was treated for Strontium Recovery and then neutralized. As of 1967 all<br>of the High-Level Waste left PUREX as an acid solution for treatment at B-<br>Plant. See also P, and PL.                                                                                                                                                                                                                                                            |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nf                                                               | does not show at surface, not in a pit - no surface access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nf<br>NFAW                                                       | does not show at surface, not in a pit - no surface access<br>AGING WASTE FROM PUREX/PFM HIGH LEVEL WASTE (FFTF-NCAW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nf<br>NFAW<br>NFPA                                               | does not show at surface, not in a pit - no surface access<br>AGING WASTE FROM PUREX/PFM HIGH LEVEL WASTE (FFTF-NCAW)<br>National Fire Protection Association                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nf<br>NFAW<br>NFPA<br>NHAW                                       | does not show at surface, not in a pit - no surface access AGING WASTE FROM PUREX/PFM HIGH LEVEL WASTE (FFTF-NCAW) National Fire Protection Association AGING WASTE FROM PUREX/PFM PROCESSING OF NPR FUEL                                                                                                                                                                                                                                                                                                                                                                                                               |
| nf<br>NFAW<br>NFPA<br>NHAW<br>NH3                                | does not show at surface, not in a pit - no surface access<br>AGING WASTE FROM PUREX/PFM HIGH LEVEL WASTE (FFTF-NCAW)<br>National Fire Protection Association<br>AGING WASTE FROM PUREX/PFM PROCESSING OF NPR FUEL<br>ammonia (term located WHC-EP-0702, Rev 0)                                                                                                                                                                                                                                                                                                                                                         |
| nf<br>NFAW<br>NFPA<br>NHAW<br>NH3<br>N2O                         | does not show at surface, not in a pit - no surface access<br>AGING WASTE FROM PUREX/PFM HIGH LEVEL WASTE (FFTF-NCAW)<br>National Fire Protection Association<br>AGING WASTE FROM PUREX/PFM PROCESSING OF NPR FUEL<br>ammonia (term located WHC-EP-0702, Rev 0)<br>Nitrous Oxide (term located WHC-EP-0702, Rev 0)                                                                                                                                                                                                                                                                                                      |
| nf<br>NFAW<br>NFPA<br>NHAW<br>NH3<br>N2O<br>NIOSH                | does not show at surface, not in a pit - no surface accessAGING WASTE FROM PUREX/PFM HIGH LEVEL WASTE (FFTF-NCAW)National Fire Protection AssociationAGING WASTE FROM PUREX/PFM PROCESSING OF NPR FUELammonia (term located WHC-EP-0702, Rev 0)Nitrous Oxide (term located WHC-EP-0702, Rev 0)National Institute of Occupational Safety and Health (term located LA-UR-92-<br>3196 Revised)                                                                                                                                                                                                                             |
| nf<br>NFAW<br>NFPA<br>NHAW<br>NH3<br>N2O<br>NIOSH<br>NIST        | does not show at surface, not in a pit - no surface accessAGING WASTE FROM PUREX/PFM HIGH LEVEL WASTE (FFTF-NCAW)National Fire Protection AssociationAGING WASTE FROM PUREX/PFM PROCESSING OF NPR FUELammonia (term located WHC-EP-0702, Rev 0)Nitrous Oxide (term located WHC-EP-0702, Rev 0)National Institute of Occupational Safety and Health (term located LA-UR-92-3196 Revised)National Institute of Standards and Technology (term located LA-UR-92-3196 Revised)                                                                                                                                              |
| nf<br>NFAW<br>NFPA<br>NHAW<br>NH3<br>N2O<br>NIOSH<br>NIST<br>NIT | does not show at surface, not in a pit - no surface accessAGING WASTE FROM PUREX/PFM HIGH LEVEL WASTE (FFTF-NCAW)National Fire Protection AssociationAGING WASTE FROM PUREX/PFM PROCESSING OF NPR FUELammonia (term located WHC-EP-0702, Rev 0)Nitrous Oxide (term located WHC-EP-0702, Rev 0)National Institute of Occupational Safety and Health (term located LA-UR-92-3196 Revised)National Institute of Standards and Technology (term located LA-UR-92-3196 Revised)HNO3/KMNO4 solution added during evaporator operation (Neutralization in Transit?) See also PNF.                                              |
| nf<br>NFAW<br>NFPA<br>NHAW<br>NH3<br>N2O<br>NIOSH<br>NIST<br>NIT | does not show at surface, not in a pit - no surface accessAGING WASTE FROM PUREX/PFM HIGH LEVEL WASTE (FFTF-NCAW)National Fire Protection AssociationAGING WASTE FROM PUREX/PFM PROCESSING OF NPR FUELammonia (term located WHC-EP-0702, Rev 0)Nitrous Oxide (term located WHC-EP-0702, Rev 0)National Institute of Occupational Safety and Health (term located LA-UR-92-3196 Revised)National Institute of Standards and Technology (term located LA-UR-92-3196 Revised)HNO3/KMNO4 solution added during evaporator operation (Neutralization in Transit?) See also PNF.oxides of nitrogen (term located WHC-EP-0791) |

| NRAW                   | AGING WASTE FROM PUREX/PFM RESIDUE ACID WASTE (FFTF-NCAW)                                                                                                                                             |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NRC                    | US Nuclear Regulatory Commission (term fromWHC-EP-0791)                                                                                                                                               |
| NRP82                  | DILUTE, NON-COMPLEXED WASTE FROM FY82 100-N AREA WASTE<br>TRANSFER                                                                                                                                    |
| NRPO4                  | DILUTE, PHOSPHATE WASTE FROM 100 N AREA                                                                                                                                                               |
| NRSO4                  | DILUTE, NON-COMPLEXED WASTE FROM 100 N AREA                                                                                                                                                           |
| NSSFC                  | National Severe Storms Forecast Center (term located LA-UR-92-3196 Revised)                                                                                                                           |
| NW                     | northwest quadrant of tank (term from/WHC-SD-WM-ER-204, Rev.0)                                                                                                                                        |
| OFFGAS                 | cell air and offgas (term located WHC-EP-0791)                                                                                                                                                        |
| OP                     | observation port (term fromWHC-SD-WM-ER-204, Rev.0)                                                                                                                                                   |
| Open Hole Salt<br>Well | A well in which a pump is inserted in solid waste. Frequently used to remove<br>the liquid from tanks containing less than 2 feet of sludge. See also Salt Well.                                      |
| Organic Wash<br>Waste  | The solvent used in PUREX was treated before reuse by washing with<br>Potassium Permanganate and Sodium Carbonate, followed by Dilute Nitric<br>Acid and then a Sodium Carbonate wash. See also OVVV. |
| ORR                    | operational readiness review (term located WHC-EP-0702, Rev 0)                                                                                                                                        |
| OSD                    | operational safety document                                                                                                                                                                           |
| OSHA                   | Occupational Safety and Health Administration                                                                                                                                                         |
| OSR                    | Operational Safety Requirement                                                                                                                                                                        |
| отнні                  | Other upper limit (term located WHC-EP-0791)                                                                                                                                                          |
| Ουτχ                   | Transfer from Tank_n out to either a secondary processing operation or to a crib. See also TR.                                                                                                        |
| OVM                    | organic vapor monitor (term located WHC-EP-0702, Rev 0)                                                                                                                                               |
| oww                    | Organic Wash Waste from PUREX. Evidently, this was combined with P waste in 1960-61, but usually kept separate. See also A-Plant, PUREX Plant, and CWP-CARB.                                          |
| Ρ                      | PUREX HLW, 1956-72. Sometimes assumed to be 50% OWW. Used NPH/TBP to extract both Pu and U. Np was also extracted from 1963-72. See also DN, and PL.                                                  |
| P                      | Photo Evaluation (term located Tank and Surveillance and Waste Status<br>Summary Report)                                                                                                              |

P&IDs piping and instrument diagrams .

P00-P## In-Plant scavenging with FeCN. See also SCAV, T00-T##

PADE PUREX AMMONIA DESTRUCTION WASTE, FROM FUELS GRADE FUEL

- PADWG PUREX AMMONIA DESTRUCTION WASTE, FROM WEAPONS GRADE FUEL
- PAS PUREX Acidified Sludge—refers to sludge that has been sluiced from waste tanks and acidified to 0.1 M HNO3 (as part of Cs/Sr recovery) in AR-Vault.

PASF PUREX AMMONIA SCRUBBER FEED. Waste that derives from the scrubber for the cladding dissolves off gas.

PAW PUREX Acidified Waste. Also used to refer to Aluminum Cladded Fuel (as opposed to ZAW for Zirconium Cladded Fuel). See also CAW, HAW, IWW, NCAW, and PAW.

PCOND PUREX condensate

PCONDCRIB PUREX condensate to crib.

PD PUREX decladding waste. See also CWP/Zr, NCRW, and PN.

PDBNG DECLADDING SLUDGE (NON-TRU) FROM B-PLANT PROCESSING

- PDBSU DILUTE, NON-COMPLEXED WASTE FROM B-PLANT DECLADDING WASTE
- PDBTG B-PLANT AGING WASTE SOLIDS FROM PUREX DECLADDING WASTE

PDCSS DILUTE NON-COMPLEXED PUREX DECLADDING WASTE, FY 1986 ONLY

PDL87 PUREX DECLADDING SUPERNATANT, 1987

PDL89 PUREX DECLADDING SUPERNATANT, NON TRU, SPENT METATHESIS REMOVED

- PD/PN Plutonium-Uranium Extraction (PUREX) Neutralized Cladding Removal Waste (NCRW), transuranic waste (TRU). See also (PUREX Decladding)
- PDNSG NON-TRU DECLADDING SLUDGE FROM PUREX
- PDS87 PUREX DECLADDING SLUDGE

PDS89 PUREX DECLADDING SLUDGE AFTER FY89

PDSLG PUREX DECLADDING SLUDGE SOL PUREX

PDSUP DILUTE, NON-COMPLEXED WASTE PUREX DECLADDING WASTE

PFD process flow diagram (term located WHC-EP-0791)

PFeCN1 Ferrocyanide sludge produced by in-plant scavenging of waste from Uranium recovery. Used 0.005 M Ferrocyanide. See also FeCN, TFeCN, UR, P00, T00.

PFeCN2 Same as PFeCN1, except used 0.0025 M Ferrocyanide.

PEL permissible exposure limit

PFM ??? (See also NCAW, NFAW, NRAW, and NHAW).

PFMMS DILUTE, NON-COMPLEXED WASTE FROM SHEAR/LEACH PROCESSING OF NPR FUEL

PFP Pu Finishing Plant waste...See also DN, DN/PD, DN/PT, P, PRF, TRU, Z, and 224

PFPGR DILUTE, NON-COMPLEXED WASTE FROM RETRIEVED PFP SOLIDS

- PFPNT NON-TRU SLUDGE FROM THE PFP SOL Z-PLANT
- PFPPT DILUTE, NON-COMPLEXED WASTE FROM THE PFP (WITH TRUEX). See also TRUEX
- PFPSL HIGH-TRU SLUDGE FROM THE PFP SOL Z- PLANT
- PI Partially Interim Isolated. The administrative designation reflecting the completion of the physical effort required for Interim Isolation except for isolation of riser and piping that is required for jet pumping or for other methods of stabilization. (term located Tank and Surveillance and Waste Status Summary Report)
- PL PUREX Low-Level. See also P.
- PLC programmable logic controller

PML89 PUREX SPENT METATHESIS LIQUID AFTER FY89

PMS89 PUREX SPENT METATHESIS SOLIDS AFTER FY89

- PN PUREX, Neutralized cladding waste. See also CWP, NCRW and PD.
- PNF Partial Neutralization Feed. Indicates addition of nitric acid at an evaporator in an attempt to produce more salt cake during volume reduction. See also NIT.
- PNL Pacific Northwest Laboratory
- PP pump pit (term located WHC-SD-WM-ER-204, Rev.0)
- PRA probabilistic risk assessment
- PRF Plutonium Reclamation Facility—Type of waste generated in Z-Plant for "finishing wastes". Solvent based extraction process using CCI4/TBP. See also DN, DN/PD, DN/PT, P, PFP, TRU, Z, and 224.

| PSA              | probabilistic safety assessment                                                                                                                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSICSF           | pump system installation containment seal fixture                                                                                                                                                                 |
| PSL              | PUREX sludge sluiced during recovery of Sr.                                                                                                                                                                       |
| PSS              | PUREX Sludge Supernatant.                                                                                                                                                                                         |
| PSSF             | PUREX Sludge Supernatant Feed?                                                                                                                                                                                    |
| РТ               | Plutonium Finishing Plant (PFP) TRU Solids. TRU solids from 200W.                                                                                                                                                 |
| PT100            | TRU waste from ??                                                                                                                                                                                                 |
| PUREX            | Also called A-Plant where PUREX process ran from Jan. 1952-Jun. 1972, then was in standby and ran again from Nov. 1983 to 1991, and is now shutdown (see also P, CWP, OWW). See also A-Plant, CWP, CARB, and OVWV |
| PUREX Decladding | 3                                                                                                                                                                                                                 |
| PVM              | pulse width modulated                                                                                                                                                                                             |
| PX86S            | DILUTE, NON-COMPLEXED WASTE FROM PUREX MISC. STREAMS (NPR<br>FUEL) FY 86                                                                                                                                          |
| PXBAW            | B-PLANT AGING WASTE SUPERNATANT FROM RETRIEVED AGING WASTE                                                                                                                                                        |
| PXBSG            | B-PLANT AGING WASTE SOLIDS FROM RETRIEVED AGING WASTE                                                                                                                                                             |
| PXFTF            | DILUTE, NON-COMPLEXED WASTE FROM PUREX MISC. STREAMS (FFTF)                                                                                                                                                       |
| PXLOW            | PUREX LOW LEVEL WASTE THAT WENT TO SST                                                                                                                                                                            |
| PXMET            | PUREX DILUTE, NON-COMPLEXED DECLADDING: SPENT METATHESIS                                                                                                                                                          |
| PXMSC            | DILUTE, NON-COMPLEXED WASTE FROM PUREX MISC. STREAMS (NPR<br>FUEL)                                                                                                                                                |
| PXNAW            | AGING WASTE FROM PUREX HIGH LEVEL WASTE                                                                                                                                                                           |
| QA               | quality assurance                                                                                                                                                                                                 |
| R                | REDOX waste was generated from 1952 to 1966. It used methylisobutylketone<br>(hexone) as a solvent, and extracted both uranium and plutonium. (S-Plant)<br>Ran from Jan. 1952 to Dec. 1967.                       |
| RADIUS           | distance of riser center from tank center (term located SD-RE-TI-053 Rev. 8)                                                                                                                                      |
| RAM              | random access memory                                                                                                                                                                                              |
| RCC              | ??REDOX CC??                                                                                                                                                                                                      |

| RCOND      | REDOX Condensate.                                                                                                                                                                                     |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RCONDCRIB  | REDOX Condensate to Crib.                                                                                                                                                                             |
| REC        | Receive from Trans_tank and are always positive. Trans_tank will always be one of the primary 177 waste tanks. See also SEND, TR, and XFER.                                                           |
| REDOX      | Also know as S-Plant where REDOX process ran 1952-66? See also R, and CWR.                                                                                                                            |
| RESD       | Residual Evaporator Liquor                                                                                                                                                                            |
| RISER      | pipe leading into tank dome See also Blank Space.(term located SD-RE-TI-<br>053 Rev. 8)                                                                                                               |
| Riser ( )  | riser is within a pit                                                                                                                                                                                 |
| Riser P/CP | riser is recessed below a cement pad with an access plate at grade (term located SD-RE-TI-053 Rev. 8)                                                                                                 |
| RIX        | REDOX Ion Exchange. See also RTX, and SIX                                                                                                                                                             |
| RP         | receiving pit (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                  |
| RMC        | Remote Mechanical C-Line-Process used in Z-Plant.                                                                                                                                                     |
| RSN        | REDOX Supernatant                                                                                                                                                                                     |
| RSS        | REDOX Sludge Supernatant                                                                                                                                                                              |
| RSS        | remote supervisory station                                                                                                                                                                            |
| RTD        | Resistance Temperatue Detector (term located WHC-SD-WM-TI-553, Rev 0)                                                                                                                                 |
| RTX        | REDOX Ion Exchange. See also SIX, and RIX                                                                                                                                                             |
| S          | Transaction Flag Key-Partial Neutralization (PNF).                                                                                                                                                    |
| S          | south (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                          |
| S          | Sludge Level Measurement Device (term located Tank and Surveillance and Waste Status Summary Report)                                                                                                  |
| SA         | safety assessment                                                                                                                                                                                     |
| Salt Cake  | Crystallized Nitrate and other salts deposited in waste tanks, usually after<br>active measures are taken to remove moisture. (term located Tank and<br>Surveillance and Waste Status Summary Report) |
| Sait Well  | A hole drilled or sluiced into a salt cake and lined with a cylindrical screen to<br>permit drainage and jet pumping of interstitial liquors.                                                         |
| SAR        | safety analysis report                                                                                                                                                                                |

| SC        | safety class                                                                                                                                                                                                                                              |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCAV      | Scavenging campaign with FeCN on TBP, 1952-57. See also T00-T##, P00-<br>P##, and Scavenged.                                                                                                                                                              |
| Scavenged | Waste which has been treated with Ferrocyanide to remove Cesium for the supernatant by precipitating it into the sludge. See also SCAV                                                                                                                    |
| SCBA      | self-contained breathing apparatus                                                                                                                                                                                                                        |
| scf       | standard cubic feet (term located WHC-EP-0702, Rev 0)                                                                                                                                                                                                     |
| SCH       | schedule                                                                                                                                                                                                                                                  |
| SCO       | safety condition for operation                                                                                                                                                                                                                            |
| scwo      | supercritical water oxidation (term located WHC-EP-0791)                                                                                                                                                                                                  |
| SD        | standard deviations (term located WHC-EP-0702, Rev 0)                                                                                                                                                                                                     |
| SD        | slurry distributor (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                 |
| SDRCSF    | slurry distributor removal containment seal fixture                                                                                                                                                                                                       |
| SE        | southeast quadrant tank (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                            |
| SE        | solvent extract (term located WHC-EP-0791)                                                                                                                                                                                                                |
| SEND      | Transfer from Tank_n to Trans_tank and is always negative. Trans_tank will<br>always be one of the primary 177 waste tanks. See also TR and XFER.                                                                                                         |
| SET       | Connect cascaded tanks together. See also CAS and END.                                                                                                                                                                                                    |
| SF        | Sluny feed?                                                                                                                                                                                                                                               |
| SIZE      | Nominal pipe diameter of riser (in inches) (term located SD-RE-TI-053 Rev. 8)                                                                                                                                                                             |
| SIX       | REDOX Ion Exchange. See also RTX, and RIX.                                                                                                                                                                                                                |
| SL        | Sludge (Solids formed during sodium hydroxide additions to waste. Sludge usually was in the form of suspended solids when the waste was originally received in the tank from the waste generator. In-tank photographs may be used to estimate the volume. |
| SLS       | solid/liquid separation (term located WHC-EP-0791)                                                                                                                                                                                                        |
| SLT       | sludge level tape (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                  |
| SL3SY     | DOUBLE-SHELL SLURRY FROM EOFY 80 SY-103 INVENTORY                                                                                                                                                                                                         |
| SLUD31    | Sludge Wash C HLW stream (term located WHC-EP-0791)                                                                                                                                                                                                       |

.

•

.

| Slugs   | An early term for Uranium Fuel Elements which had been machined or<br>extruded into short cylinders which were then clad or encased in corrosion-<br>resistant metals.                                      |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SLULLW  | Sludge Wash C LLW stream                                                                                                                                                                                    |
| SMP     | sludge measurement port (term located WHC-SD-WM-ER-204, Rev.0 & SD-<br>RE-TI-053 Rev. 8)                                                                                                                    |
| SN      | sluicing nozzle (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                      |
| SOE     | safe operating envelope                                                                                                                                                                                     |
| SOLEX   | Solvent Extraction Option (term located WHC-EP-0791)                                                                                                                                                        |
| SP      | sluice pit (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                           |
| SPARE   | spare riser with no current function or planned use - possible concrete plug underneath plate (term located SD-RE-TI-053 Rev. 8)                                                                            |
| SpG     | Specific Gravity(term located SD-RE-TI-053 Rev. 8)                                                                                                                                                          |
| S-PLANT | See REDOX                                                                                                                                                                                                   |
| SREX    | Strontium extraction (term located WHC-EP-0791)                                                                                                                                                             |
| SPRG    | Sparge-transfer of water or volume?                                                                                                                                                                         |
| SR      | SST Solids Retrieved                                                                                                                                                                                        |
| SR      | sluicing riser (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                       |
| SRCVR   | Sturry Receiver Tank                                                                                                                                                                                        |
| SREX    | Strontium extraction                                                                                                                                                                                        |
| SRR     | Slurred PUREX sludge from A and AX-Farms was sent to B-Plant for strontium recovery from 1967-76. Some 801 kgal was sent to and 2810 kgal returned from B-Plant with AX-103? and A-102? as a staging tanks? |
| SRS     | Strontium Recovery Supernatant. The sludges sluiced for SRR were washed in AR vault with supernatant from C-105. The resulting supernatants were sent to CSR.                                               |
| SRS     | shock response system                                                                                                                                                                                       |
| SRS     | Savannah River Site (term located WHC-EP-0791)                                                                                                                                                              |
| SRSS    | square root of the sum of the squares                                                                                                                                                                       |
| S.S.    | Evidently refers to a direct addition from plant, bypassing the first tank in a cascade series.                                                                                                             |

| SS                                                          | stainless steel                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SSC                                                         | stainless steel carbon                                                                                                                                                                                                                                                                                                                                                                                                          |
| SST                                                         | single-shell tank (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                                                                                                        |
| ST                                                          | short term                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Strontium Semi-<br>Works (SSW)                              | Strontium Semi-Works. Called C-Ptant or Hot Semi-Works earlier, was pilot<br>for both REDOX and PUREX, Jul. 1952 to Jul. 1956. Then reconfigured for<br>Strontium recovery pilot plant from July 1960 to July 1967. See also C-Plant<br>and HS.                                                                                                                                                                                 |
| STAB                                                        | Tank stabilized by removal of liquid. Both floating suction and salt-well jet pumps are used to remove liquid.                                                                                                                                                                                                                                                                                                                  |
| STAT                                                        | Tank level measurement for each quarter in kgal (1 kgal = 1,000 gallons) as<br>reported by Anderson.                                                                                                                                                                                                                                                                                                                            |
| SU                                                          | Supernatant (Drainable Liquid Remaining minus Drainable Interstitial.<br>Supernate is usually derived by subtracting the solids level measurement from<br>the liquid level measurement.                                                                                                                                                                                                                                         |
| SURFACE LEVELS                                              | The surface level measurements in all waste storage tanks are monitored by<br>manual or automatic conductivity probes, and recorded and transmitted or<br>inputted to the Computer Automated Surveillance System (CASS). (term<br>located Tank and Surveillance and Waste Status Summary Report)                                                                                                                                |
| SUPERNATE                                                   | The liquid above the solids in waste storage tanks. (term located Tank and<br>Surveillance and Waste Status Summary Report)                                                                                                                                                                                                                                                                                                     |
| SV                                                          | Transaction Flag Key-Amount by difference in solids.                                                                                                                                                                                                                                                                                                                                                                            |
| SW                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                             | SST Washed Solids                                                                                                                                                                                                                                                                                                                                                                                                               |
| SW                                                          | SST Washed Solids southwest quadrant of tank (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                                                                             |
| sw<br>Swa                                                   | SST Washed Solids<br>southwest quadrant of tank (term located WHC-SD-WM-ER-204, Rev.0)<br>Sludge Wash A (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                              |
| SWA<br>SWB                                                  | SST Washed Solids<br>southwest quadrant of tank (term located WHC-SD-WM-ER-204, Rev.0)<br>Sludge Wash A (term located WHC-EP-0791)<br>Sludge Wash B (term located WHC-EP-0791)                                                                                                                                                                                                                                                  |
| SWA<br>SWA<br>SWB<br>SWC                                    | SST Washed Solids<br>southwest quadrant of tank (term located WHC-SD-WM-ER-204, Rev.0)<br>Sludge Wash A (term located WHC-EP-0791)<br>Sludge Wash B (term located WHC-EP-0791)<br>Sludge Wash C (term located WHC-EP-0791)                                                                                                                                                                                                      |
| SWA<br>SWA<br>SWB<br>SWC<br>SWLIQ                           | SST Washed Solids<br>southwest quadrant of tank (term located WHC-SD-WM-ER-204, Rev.0)<br>Sludge Wash A (term located WHC-EP-0791)<br>Sludge Wash B (term located WHC-EP-0791)<br>Sludge Wash C (term located WHC-EP-0791)<br>DILUTE, NON-COMPLEXED WASTE FROM EAST AREA SINGLE-SHELL<br>TANKS                                                                                                                                  |
| SWA<br>SWA<br>SWB<br>SWC<br>SWLIQ<br>SWLIQ                  | SST Washed Solids<br>southwest quadrant of tank (term located WHC-SD-WM-ER-204, Rev.0)<br>Sludge Wash A (term located WHC-EP-0791)<br>Sludge Wash B (term located WHC-EP-0791)<br>Sludge Wash C (term located WHC-EP-0791)<br>DILUTE, NON-COMPLEXED WASTE FROM EAST AREA SINGLE-SHELL<br>TANKS                                                                                                                                  |
| SWA<br>SWA<br>SWB<br>SWC<br>SWLIQ<br>SWLQW<br>SWP           | SST Washed Solids<br>southwest quadrant of tank (term located WHC-SD-WM-ER-204, Rev.0)<br>Sludge Wash A (term located WHC-EP-0791)<br>Sludge Wash B (term located WHC-EP-0791)<br>Sludge Wash C (term located WHC-EP-0791)<br>DILUTE, NON-COMPLEXED WASTE FROM EAST AREA SINGLE-SHELL<br>TANKS<br>DILUTE, NON-COMPLEXED WASTE FROM WEST AREA SSTs<br>sait well pump (term located WHC-SD-WM-ER-204, Rev.0)                      |
| SWA<br>SWA<br>SWB<br>SWC<br>SWLIQ<br>SWLQW<br>SWP<br>SW RCR | SST Washed Solids<br>southwest quadrant of tank (term located WHC-SD-WM-ER-204, Rev.0)<br>Sludge Wash A (term located WHC-EP-0791)<br>Sludge Wash B (term located WHC-EP-0791)<br>Sludge Wash C (term located WHC-EP-0791)<br>DILUTE, NON-COMPLEXED WASTE FROM EAST AREA SINGLE-SHELL<br>ANKS<br>DILUTE, NON-COMPLEXED WASTE FROM WEST AREA SSTs<br>sait well pump (term located WHC-SD-WM-ER-204, Rev.0)<br>Sait well receiver |

٠
| SWS             | salt well screen (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tank Farm       | An area containing a number of storage tanks; i.e., a chemical tank farm for<br>storage of chemicals used in a plant, or underground waste tank storage or<br>radioactive waste.                                                                                                                                                                                |
| TBD             | to be determined (term located WHC-SD-WM-TI-553, Rev 0)                                                                                                                                                                                                                                                                                                         |
| ТВР             | Tri-Butyl Phosphate-waste from solvent based Uranium Recovery operation in '50's. Renamed to UR waste in the Defined Waste report. More usually refers to the chemical Tributyl Phosphate, OP(OC4H9)3, which was used in Uranium Recovery and in PUREX.                                                                                                         |
| TBX             | instrument leads of several kinds - usually on annulus of tank (term located SD-RE-TI-053 Rev. 8)                                                                                                                                                                                                                                                               |
| ТС              | thermocouple (term located WHC-SD-WM-TI-553, Rev 0)                                                                                                                                                                                                                                                                                                             |
| TCIX            | technetium ion exchange (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                              |
| тст             | thermocouple tree                                                                                                                                                                                                                                                                                                                                               |
| TEMP            | temperature probe (term located SD-RE-TI-053 Rev. 8)                                                                                                                                                                                                                                                                                                            |
| Terminal Liquor | The liquid product from the Evaporation-Crystallization Process which, upon further concentration, forms an unacceptable solid for storage in single-shell tanks. Terminal liquor is characterized by caustic concentration of approximately 5.5 <u>M</u> (the caustic motarity will be lower if the Aluminum Salt Saturation is reached first). See also HDRL. |
| TGA             | thermal gravimetric analysis                                                                                                                                                                                                                                                                                                                                    |
| TFeCN           | Ferrocyanide sludge produced by in-tank or in-farm scavenging. See also FeCN, PFeCN, UR, P00, T00.                                                                                                                                                                                                                                                              |
| тн              | Thoria HLW or Cladding waste                                                                                                                                                                                                                                                                                                                                    |
| THFTCA          | tetrahydrofurantetracarboxylic acid (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                  |
| THL             | Thoria Low Level                                                                                                                                                                                                                                                                                                                                                |
| TL              | Terminal Liquor                                                                                                                                                                                                                                                                                                                                                 |
| TLV             | threshold limit value                                                                                                                                                                                                                                                                                                                                           |
| TLV-C           | threshold limit value-ceiling                                                                                                                                                                                                                                                                                                                                   |
| TLV-STEL        | threshold limit value-short-term exposure limit                                                                                                                                                                                                                                                                                                                 |
| TLV-TWA         | threshold limit value-time weighted average                                                                                                                                                                                                                                                                                                                     |
| TMACS           | tank monitor and control system (term located WHC-SD-WM-Ti-553, Rev 0)                                                                                                                                                                                                                                                                                          |

-

.

A-25

| тос                                                                                   | total organic carbon (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T00-##                                                                                | In-Tank scavenging with FeCN-see also SCAV, P##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ТР                                                                                    | temperature probe (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TPA                                                                                   | Tri-Party Agreement includes DOE, Washington State Dept. of Ecology, and the EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TPLAL                                                                                 | DILUTE, NON-COMPLEXED WASTE FROM T PLANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TPLAN                                                                                 | DILUTE, NON-COMPLEXED WASTE FROM T PLANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| T-Plant                                                                               | Decontamination plant for various equipment. Originally built for BiPO4 process, but since only used for decontamination. BiPO4 ran from Dec. 1944 to Aug. 1956.                                                                                                                                                                                                                                                                                                                                                                                         |
| TPLAS                                                                                 | SLUDGE FROM T PLANT OPERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TR                                                                                    | Transfer from tank. See also REC, SEND, and XFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TRAC                                                                                  | transient reactor analysis code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| trFlag                                                                                | Transaction Flag Keysused by W-TRACSee also<br>CDF,D,E,S,SV,1,3,6,.17,.33.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TRO                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IKG                                                                                   | test review group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TRU                                                                                   | Transuranic. See also DN, DN/PD, DN/PT, P, PFP, PRF, Z, and 224.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TRU<br>TRUEX                                                                          | Transuranic. See also DN, DN/PD, DN/PT, P, PFP, PRF, Z, and 224.<br>Transuranic Extraction. See also PFPPT.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TRU<br>TRUEX<br>TRUEX-C                                                               | Transuranic. See also DN, DN/PD, DN/PT, P, PFP, PRF, Z, and 224.<br>Transuranic Extraction. See also PFPPT.<br>Transuranic Extraction Option C (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                                                                                                |
| TRU<br>TRUEX<br>TRUEX-C<br>TRULLW                                                     | Transuranic. See also DN, DN/PD, DN/PT, P, PFP, PRF, Z, and 224.<br>Transuranic Extraction. See also PFPPT.<br>Transuranic Extraction Option C (term located WHC-EP-0791)<br>TRUEX-C LLW stream (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                                               |
| TRU<br>TRUEX<br>TRUEX-C<br>TRULLW<br>TRUX31                                           | Transuranic. See also DN, DN/PD, DN/PT, P, PFP, PRF, Z, and 224.<br>Transuranic Extraction. See also PFPPT.<br>Transuranic Extraction Option C (term located WHC-EP-0791)<br>TRUEX-C LLW stream (term located WHC-EP-0791)<br>TRUEX-C HLW stream (term located WHC-EP-0791)                                                                                                                                                                                                                                                                              |
| TRU<br>TRUEX<br>TRUEX-C<br>TRULLW<br>TRUX31<br>TSR                                    | Transuranic. See also DN, DN/PD, DN/PT, P, PFP, PRF, Z, and 224.<br>Transuranic Extraction. See also PFPPT.<br>Transuranic Extraction Option C (term located WHC-EP-0791)<br>TRUEX-C LLW stream (term located WHC-EP-0791)<br>TRUEX-C HLW stream (term located WHC-EP-0791)<br>technical safety requirement                                                                                                                                                                                                                                              |
| TRU<br>TRUEX<br>TRUEX-C<br>TRULLW<br>TRUX31<br>TSR<br>TTL                             | Transuranic. See also DN, DN/PD, DN/PT, P, PFP, PRF, Z, and 224.<br>Transuranic Extraction. See also PFPPT.<br>Transuranic Extraction Option C (term located WHC-EP-0791)<br>TRUEX-C LLW stream (term located WHC-EP-0791)<br>TRUEX-C HLW stream (term located WHC-EP-0791)<br>technical safety requirement<br>transistor-transistor logic                                                                                                                                                                                                               |
| TRU<br>TRUEX<br>TRUEX-C<br>TRULLW<br>TRUX31<br>TSR<br>TTL<br>TWA                      | test review group<br>Transuranic. See also DN, DN/PD, DN/PT, P, PFP, PRF, Z, and 224.<br>Transuranic Extraction. See also PFPPT.<br>Transuranic Extraction Option C (term located WHC-EP-0791)<br>TRUEX-C LLW stream (term located WHC-EP-0791)<br>TRUEX-C HLW stream (term located WHC-EP-0791)<br>technical safety requirement<br>transistor-transistor logic<br>time-weighted logic                                                                                                                                                                   |
| TRU<br>TRUEX<br>TRUEX-C<br>TRULLW<br>TRUX31<br>TSR<br>TTL<br>TWA<br>TXR Vault         | Transuranic. See also DN, DN/PD, DN/PT, P, PFP, PRF, Z, and 224.<br>Transuranic Extraction. See also PFPPT.<br>Transuranic Extraction Option C (term located WHC-EP-0791)<br>TRUEX-C LLW stream (term located WHC-EP-0791)<br>TRUEX-C HLW stream (term located WHC-EP-0791)<br>technical safety requirement<br>transistor-transistor logic<br>time-weighted logic<br>Vault in TX-Farm used in FeCN scavenging in TX-Farm.                                                                                                                                |
| TRU<br>TRUEX<br>TRUEX-C<br>TRULLW<br>TRUX31<br>TSR<br>TTL<br>TWA<br>TXR Vault<br>UIU2 | Transuranic. See also DN, DN/PD, DN/PT, P, PFP, PRF, Z, and 224.<br>Transuranic Extraction. See also PFPPT.<br>Transuranic Extraction Option C (term located WHC-EP-0791)<br>TRUEX-C LLW stream (term located WHC-EP-0791)<br>TRUEX-C HLW stream (term located WHC-EP-0791)<br>technical safety requirement<br>transistor-transistor logic<br>time-weighted logic<br>Vault in TX-Farm used in FeCN scavenging in TX-Farm.<br>DILUTE, NON-COMPLEXED WASTE FROM U1/U2 GROUNDWATER<br>PUMPING                                                               |
| TRU<br>TRUEX<br>TRUEX-C<br>TRULLW<br>TRUX31<br>TSR<br>TTL<br>TWA<br>TXR Vault<br>UIU2 | Transuranic. See also DN, DN/PD, DN/PT, P, PFP, PRF, Z, and 224.<br>Transuranic Extraction. See also PFPPT.<br>Transuranic Extraction Option C (term located WHC-EP-0791)<br>TRUEX-C LLW stream (term located WHC-EP-0791)<br>TRUEX-C HLW stream (term located WHC-EP-0791)<br>technical safety requirement<br>transistor-transistor logic<br>time-weighted logic<br>Vault in TX-Farm used in FeCN scavenging in TX-Farm.<br>DILUTE, NON-COMPLEXED WASTE FROM U1/U2 GROUNDWATER<br>PUMPING<br>upper flammability limit (term located WHC-EP-0702, Rev 0) |

•

٠

•

A-26

•

·

| U-Piant                    | Uranium Recovery plant (see also UR, TBP) from Mar. 1952 to Jan. 1958, UO3-plant from then until Sept. 1972. Restarted in Mar. 1984, and is now shutdown.                                                                                       |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UPS                        | uninterruptible power supply                                                                                                                                                                                                                    |
| UREX                       | uranium extraction (term located WHC-EP-0791)                                                                                                                                                                                                   |
| USNRC                      | US Nuclear Regulatory Commission                                                                                                                                                                                                                |
| UNKN                       | UNKNOWN WASTE ORIGIN SINK                                                                                                                                                                                                                       |
| UR .                       | Uranium Recovery Operation in 222-U, 1952-57. Created TBP (primary waste) and FeCN (scavenging wastes). TBP waste called UR waste in Defined Waste report. See also, TFeCN, PFeCN, P00, T00, FeCN.                                              |
| UREX                       | Uranium extraction                                                                                                                                                                                                                              |
| USBM                       | US Bureau of Mines (term located WHC-EP-0702, Rev 0)                                                                                                                                                                                            |
| USQ                        | Unreviewed Safety Question (term located WHC-EP-0702, Rev 0)                                                                                                                                                                                    |
| UT .                       | ultrasonic transducer                                                                                                                                                                                                                           |
| UX-241                     | 777                                                                                                                                                                                                                                             |
| VEV                        | validation and verification                                                                                                                                                                                                                     |
| VAQUELLW                   | varied aqueous liquids (term located WHC-EP-0791)                                                                                                                                                                                               |
| VCBUSTL                    | varied combustible solids and liquids (term located WHC-EP-0791)                                                                                                                                                                                |
| VDTT                       | velocity, density, thermocouple tree                                                                                                                                                                                                            |
| VM                         | vapor manifold (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                           |
| VOF                        | volume of fluid                                                                                                                                                                                                                                 |
| VOFFGAS                    | varied cell air and offgas (term located WHC-EP-0791)                                                                                                                                                                                           |
| VNCBUSTS                   | varied noncombustible solids (term located WHC-EP-0791)                                                                                                                                                                                         |
| VSD                        | variable speed drive                                                                                                                                                                                                                            |
| w                          | west (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                     |
| WASHF                      | OUTFLOW TO SST WASH FACILITY                                                                                                                                                                                                                    |
| Waste Tank Safety<br>Issue | A potentially unsafe condition in the handling of waste material in underground storage tanks that requires corrective action to reduce or eliminate the unsafe condition. (term located Tank and Surveillance and Waste Status Summary Report) |

| Watch List Tank | An underground storage tank containing waste that requires special safety precautions because it may have a serious potential for release of high-level radioactive waste because of uncontrolled increases in temperatures or pressure. Special restrictions have been placed on these tanks by "Safety Measures for Waste Tanks at Hanford Nuclear Reservation," Section 3137 of the National Defense Authorization Act for Fiscal Year 1991, November 5, 1990, Public Law 101-501 (Also known as the Wyden Amendment) (term located Tank and Surveillance and Waste Status Summary Report) |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WATER           | FLUSH WATER FROM MISCELLANEOUS SOURCES. See also WTR, and $H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WC              | weather cover (polyurethane foam) (term located WHC-SD-WM-ER-204, Rev.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| WHC             | Westinghouse Hanford Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WPP             | Waste Isolation Pilot Plant (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| WMIS            | Waste Management Information System (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WTR             | Water. See also WATER and H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WVDP            | West Valley Demonstration Project (term located WHC-EP-0791)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WVP             | Waste Volume Projections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| XFER            | Transfer of waste out of tank. See also REC, SEND, and TR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| XIN             | Addition of primary waste from plant (always positive). This transaction also covers waste returning from secondary processing operations.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Z               | 234-5Z waste/Z-Plant Pu Finishing. See also DN, DN/PD, DN/PT, P, PFP, PRF, TRU, and 224.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ZAW             | Zirconium Acidified Waste (PUREX waste stream from Zirconium (Zircaloy II)<br>cladded fuel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ZPA             | zero period acceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Z-Plant         | Pu Finishing plant. See also DN, DN/PD, DN/PT, P, PFP, PRF, TRU, Z, and 224. Operated from 1949 to 1991, and is now in standby                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ZHIGH           | DILUTE, NON-COMPLEXED WASTE FROM THE PFP (WITHOUT TRUEX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ZLAB            | DILUTE, NON-COMPLEXED WASTE FROM PFP LABORATORIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ZLOW            | DILUTE, NON-COMPLEXED WASTE FROM PRE-FY85 Z PLANT<br>OPERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ZPRFL           | DILUTE, NON-COMPLEXED WASTE FROM PRF PROCESSING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ZPRFS           | PFP TRU SOLIDS FROM PRF PROCESSING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| ZRMCL       | DILUTE, NON-COMPLEXED WASTE FROM PFP RMC PROCESSING                                                                                           |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| ZRMCS       | PFP TRU SOLIDS FROM PFP RMC PROCESSING                                                                                                        |
| 0.17        | TRAC code transaction flag key-monthly volumes derived from semi-annual reports.                                                              |
| 0.33        | TRAC code transaction flag key-monthly volumes derived from quarterly reports.                                                                |
| 1           | TRAC-transactions based on monthly report                                                                                                     |
| 3           | TRAC-transactions based on quarterly report.                                                                                                  |
| 6           | TRAC-transactions based on semi-annual report.                                                                                                |
| 5-6#        | Cells 5&6 from B-Plant                                                                                                                        |
| 1AYIN       | CONCENTRATED COMPLEX WASTE FROM AY-101 INVENTORY                                                                                              |
| 1AZIN       | PRE 2-81 AZ-101 INVENTORY                                                                                                                     |
| GAWIN       | CONCENTRATED PHOSPHATE WASTE IN AW-106 INVENTORY                                                                                              |
| 1C          | 1st cycle decontamination-BiPO4 process. Often included cladding waste.<br>Held 10% of FP, 1% of Pu. See also BiO4, MW, and 2 C.              |
| 1CEB        | 1st cycle evaporator bottoms                                                                                                                  |
| 1CF         | ??1st cycle feed?? Set to WATER in TRAC.                                                                                                      |
| 1 <b>CS</b> | 1st Cycle Scavenging waste. TY-101 and TY-103 received 1C waste that was scavenged with FeCN before it was added to the tanks. Termed 1CFeCN. |
| 2C          | 2nd Cycle Waste from BiO <sub>4</sub> process. Supernatant often cribbed, 0.1% of FP, 1% of Pu. See also BiO <sub>4</sub> ,MW, and 1C.        |
| 222-B       | B-Plant used for BiPO4 1944-52, then for FP recovery.                                                                                         |
| 222-T       | T-Plant used for BiPO4 1944-52.                                                                                                               |
| 222-U       | One of the three original Bismuth Phosphate Processing Facilities. Later<br>converted to a Uranium Recovery Plant.                            |
| 224         | 224-U Waste. See also DN, DN/PD, DN/PT, P, PFP, PRF, TRU, and Z                                                                               |
| 224-F       | 224-U Waste. LaF Pu Finishing Plant. Same as Z-Plant? See also LaF.                                                                           |
| 224-2       | Same as 224?                                                                                                                                  |
|             |                                                                                                                                               |

A-29

| 231-Z | DILUTE, PHOSPHATE WASTE FROM Z-231 LABORATORIES                                                                                                       |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 242-A | Reduced pressure evaporator in East Area designed for 30% solids. A-102 was feed 1977-1980. AW-102 was feed 1981-present.                             |
| 242-8 | Atmospheric evaporator used for concentrating wastes, 1952-56. B-106 was feed tank.                                                                   |
| 242-S | Reduced pressure evaporator designed for 30% solids 1973-80. S-102 was feed '73-'77. SY-102 was feed '77-'81.                                         |
| 242-T | Atmospheric evaporator used to concentrate wastes. 1952-56 and 1965-76. TX-<br>118 was feed tank.                                                     |
| 2AYIN | PRE 2-81 AY-102 INVENTORY                                                                                                                             |
| 2AZIN | PRE 2-81 CONCENTRATED COMPLEX WASTE FROM AZ-102 INVENTORY                                                                                             |
| 2C    | 2nd Cycle Decontamination Waste from BiPO4 process. Supernatant often cribbed, 0.1% of FP, 1% of Pu.                                                  |
| 25YIN | PRE 2-81 SY-102 INVENTORY                                                                                                                             |
| 3AWN  | PRE 2-81 AW-103 INVENTORY                                                                                                                             |
| 5AVMN | PRE 2-81 AW-105 INVENTORY                                                                                                                             |
| 6AVMN | CONCENTRATED PHOSPHATE WASTE IN AW-106 INVENTORY                                                                                                      |
|       | Note on transactions involving:                                                                                                                       |
|       | CAS-Cascades that "overfill" are assumed to have been directed to low-level "sites" (cribs or trenches?). No MW or R was cascaded to low-level sites. |
|       | EVAP-Operations involving evaporators are assumed to change the waste by the difference in the transaction and status reports.                        |
|       | R-REDOX plant used concentrator 1967-72.                                                                                                              |
|       | B-B-PLANT used concentrator 1967-68.                                                                                                                  |
|       |                                                                                                                                                       |

.•

All definitions in caps were taken from the Waste Volume Projection Data Set.

# Capacities and Tanks

| 55 kgal                          | 530 kgal/SST                               | 758 kgal/SST                        | 1,000<br>kgal/SST         | 1,000<br>kgal/DST | 1,1 <b>6</b> 0<br>kgal/DST            |
|----------------------------------|--------------------------------------------|-------------------------------------|---------------------------|-------------------|---------------------------------------|
| B-200<br>C-200<br>T-200<br>U-200 | B-100<br>BX-100<br>C-100<br>T-100<br>U-100 | BY-100<br>S-100<br>TX-100<br>TY-100 | A-100<br>AX-100<br>SX-100 | AY-100<br>AZ-100  | AN-100<br>AP-100<br>AVV-100<br>SY-100 |
| NE Quadrant<br>B-200<br>C-200    | B-100<br>BX-100<br>C-100                   | BY-100                              | A-100<br>AX-100           |                   |                                       |
| SW Quadrant<br>U-200             | U-100                                      | S-100                               | SX-100                    |                   |                                       |
| NW Quadrant<br>T-200             | T-100                                      | TX-100<br>TY-100                    |                           |                   |                                       |
| SE and DST<br>Quadrant           |                                            |                                     |                           | AY-100<br>AZ-100  | AN-100<br>AP-100<br>AW-100<br>SY-100  |

# Appendix B

.

# Solids Volume Per Cent

|        |       |      |      |      | Table B1   |          |          |      |  |
|--------|-------|------|------|------|------------|----------|----------|------|--|
|        |       | _    |      | 1C   | Waste vol% | Solids.  |          |      |  |
| tank   | start | qtr. | end  | qtr. | waste type | pri.vol. | acc.sol. | vol% |  |
| BX-107 | 1948  | 3    | 1951 | 2    | 1C         | 1590     | 437      | 27.5 |  |
| C-107  | 1947  | 1    | 1947 | 4    | 1C         | 1588     | 399      | 25.1 |  |
| TX-109 | 1949  | 1    | 1950 | 2    | 1C         | 3032     | 722      | 23.8 |  |
| U-110  | 1946  | 3    | 1951 | 1    | 1C         | 1394     | 336      | 24.1 |  |
|        |       |      |      |      |            |          |          |      |  |
| avg.   | 1947  | 1    | 1951 | 2    | 1C         | 7604     | 1894     | 24.9 |  |
|        |       |      |      |      |            |          |          |      |  |
| B-107  | 1945  | 2    | 1946 | 2    | 1C         | 1590     | 220      | 13.8 |  |
| C-110  | 1946  | 2    | 1947 | 4    | 1C         | 1589     | 231      | 14.5 |  |
| T-107  | 1945  | 1    | 1947 | 4    | 1C         | 1590     | 201      | 12.6 |  |
|        |       |      |      |      |            |          |          |      |  |
| avg.   | 1945  | 1    | 1947 | 4    | 1C         | 4769     | 652      | 13.7 |  |

|          |       |    |             | Tab         | le B2         | •              |        |                     |
|----------|-------|----|-------------|-------------|---------------|----------------|--------|---------------------|
|          |       |    | 1           | REDOX       | Solids.       |                |        |                     |
| tank_n   | year  | đữ | lineal date | kgal<br>CWR | kgal<br>REDOX | acc.<br>solids | vol%   | comments            |
| S-101    | 1954  | 2  | 1954.3      | 349         | 2082          | 186            | 8.9337 | 310 CWR             |
| S-104    | 1954  | 2  | 1954.3      | 284         | 2429          | 218            | 8.9749 | 284 CWR             |
| S-107    | 1972  | 1  | 1972        | 2895        | 2157          | 194            | 8.994  | at least 663<br>CWR |
| S-110    | 1952  | 3  | 1952.5      | 152         | 1983          | 101            | 5.0933 | 152 CWR             |
| SX-101   | 1955  | 3  | 1955.5      |             | 3743          | 447            | 11.942 | seems high          |
| SX-104   | 1956  | 3  | 1956.5      |             | 2668          | 191            | 7.1589 |                     |
| SX-105   | 1967  | 2  | 1967.3      |             | 372           | 23             | 6.1828 |                     |
| SX-107   | 1964  | 2  | 1964,3      | 5           | 2364          | 146            | 6.176  |                     |
| SX-108   | 1964  | 2  | 1964.3      |             | 2618          | 145            | 5.5386 |                     |
| SX-109   | 1962  | 3  | 1962.5      |             | 1756          | 250            | 14.237 | seems high          |
| SX-110   | 1966  | 2  | 1966.3      |             | 1621          | 62             | 3.8248 |                     |
| SX-111   | 1965  | 4  | 1965.8      |             | 2863          | 125            | 4.366  |                     |
| SX-112   | 1966  | 4  | 1966.8      |             | 2352          | 112            | 4.7619 |                     |
| SX-113   | 1958  | 2  | 1958.3      |             | 487           | 10             | 2.0534 |                     |
| SX-114   | 1965  | 2  | 1965.3      |             | 3575          | 200            | 5.5944 |                     |
| SX-115   | 1960  | 3  | 1960,5      |             | 967           | 10             | 1.0341 |                     |
| U-110    | 1954  | 2  | 1954.3      | 814         | 1192          | ?:             |        | 814 CWR             |
| <u>.</u> |       |    |             |             | REDOX         | REDOX          | %      |                     |
|          | }<br> |    |             |             | <b>total</b>  | solids         | solids |                     |
|          |       |    |             |             | 34037         | 2420           | 7.1099 |                     |

|                       | PFeCN/1 | PFeCN/2 | units | my totals | B&S totals | units |
|-----------------------|---------|---------|-------|-----------|------------|-------|
| FeCN M                | 0.005   | 0.0025  | M     |           |            |       |
| pri. vol.             | 10901   | 22460   | kgal  | 33361     | 33861      | kgal  |
| acc.sed.              | 403     | 718     | kgal  | 1115      | 1393       | kgal  |
| vol% sed.             | 3.70    | 3.20    | vol%  | 3.36      | 4.11       | vol%  |
| FeCN sed.             | 0.14    | 0.078   | M     |           |            |       |
| density               | 1.45    | 1.45    | g/cm3 |           |            |       |
| pred. wet<br>exotherm | 42      | 24      | cal/g |           |            |       |
| pred. dry<br>exotherm | 106     | 61      | cal/g |           |            |       |

| •                    | Table B4                   |  |
|----------------------|----------------------------|--|
| In-Tank (or in-farm) | ) TFeCN Waste vol% Solids. |  |

| waste type | tank  | primary volume | accumul. solids | vol% solids |
|------------|-------|----------------|-----------------|-------------|
| TFeCN      | C-108 | 1034           | 15              | 1.5         |
|            | C-109 | 2954           | 44              | 1.5         |
|            | C-111 | 2732           | 35              | 1.3         |
|            | C-112 | 4442           | 67              | 1.5         |
| TFeCN      | avg.  | 11162          | 161             | 1.4         |

| FUREA F Waste Vol% Solids. |       |      |      |      |            |          |          |      |  |  |  |  |
|----------------------------|-------|------|------|------|------------|----------|----------|------|--|--|--|--|
| tank                       | start | qtr. | end  | qtr. | waste type | pri.vol. | acc.sol. | vol% |  |  |  |  |
| A-101                      | 1956  | 1    | 1973 | 4    | Р          | 4545     | 83       | 1.83 |  |  |  |  |
| A-102                      | 1956  | 1    | 1961 | 3    | Р          | 7138     | 102      | 1.43 |  |  |  |  |
| A-103                      | 1956  | 2    | 1960 | 3    | Р          | 3813     | 102      | 2.68 |  |  |  |  |
| A-104                      | 1959  | 3    | 1961 | 4    | Р          | 6765     | 171      | 2.53 |  |  |  |  |
| AX-104                     | 1966  | 3    | 1969 | 2    | Р          | 1202     | 47       | 3.91 |  |  |  |  |
| avg.                       | 1956  | 1    | 1973 | 4    | P          | 23463    | 505      | 2.15 |  |  |  |  |
| A-106                      | 1960  | 4    | 1962 | 2    | P          | 1460     | 118      | 8.08 |  |  |  |  |
| AX-101                     | 1968  | 2    | 1969 | 2    | Р          | - 40     | ??       | ??   |  |  |  |  |
| AY-101                     | 1971  | 2    | 1971 | 4    | Р          | 14       | ??       | ??   |  |  |  |  |
| C-104                      | 1970  | 4    | 1976 | 2    | Р          | 91       | ??       | ??   |  |  |  |  |

### Table B5 PUREX P Waste vol% Solids

|       |       |      |         |      | Table E    | 36       |           |      |
|-------|-------|------|---------|------|------------|----------|-----------|------|
|       | PU    | RE)  | ( Clado | iing | Waste (CW  | P) Waste | vol% Soli | ds.  |
| tank  | start | qtr. | end     | qtr. | waste type | pri.vol. | acc.sol.  | vol% |
| C-101 | 1960  | . 4  | 1962    | 2    | CWP/AI     | 660      | 56        | 8.5  |
| C-103 | 1960  | 2    | 1960    | 4    | CWP/AI     | 479      | 35        | 7.3  |
| C-104 | 1956  | 1    | 1957    | 2    | CWP/AI     | 1118     | 90        | 8.1  |
| C-105 | 1957  | 3    | 1960    | 2    | CWP/AI     | 3130     | 262       | 8.4  |
| C-106 | 1958  | 2    | 1960    | 2    | CWP/AI     | 420      | 28        | 6.7  |
| avg.  | 1956  | 1    | 1965    | 2    | CWPIAI     | 5807     | 471       | 8.1  |
| C-102 | 1960  | 3    | 1965    | 2    | CWPIAI     | 5355     | 184       | 3.4  |
| C-104 | 1969  | 4    | 1970    | 1    | CWP/Zr     | 535      |           |      |
| C-104 | 1970  | 2    | 1972    | 3    | CWPIAI     | 3816     | 108       | 2.5  |
| C-102 | 1965  | 3    | 1969    | 4    | CWP/AI&Zr  | 6448     | ??        | ??   |
| C-107 | 1961  | 3    | 1962    | 2    | CWP/AI     | 1364     | ??        | ??   |
| C-108 | 1961  | 2    | 1961    | 2    | CWP/AI     | 502      | ??        | ??   |
| C-111 | 1957  | 1    | 1960    | 4    | CWP/AI     | 347      | ??        | ??   |
| C-112 | 1960  | 3    | 1961    | 2    | CWP/AI     | 254      | <u>;</u>  | ??   |

## Appendix C

#### Defined Waste List Solids Vol% August 1994

This Defined Waste List is a set of wastes that can be used to define all of Hanford's waste types. Implicit within this list is a solids and a supernatant fraction for each waste type. Note that some Defined Wastes are derived from other Defined Wastes, as Salt Slurry, for example, is actually a mixture of supernatants from other waste types that have been concentrated by removal of water.

| no. waste type |                | vol<br>% | comments                                             |
|----------------|----------------|----------|------------------------------------------------------|
| 1.             | MW44-51        | 12       |                                                      |
| 2.             | MW52-56        | 12       |                                                      |
| 3.             | 1C44-51        | 13.7     | includes CW                                          |
| 4.             | 1C52-56        | 24.9     |                                                      |
| 5.             | 2C44-51        | 6.8      |                                                      |
| 6.             | 2C52-56        | 3.4      | includes supernatants formerly cribbed at<br>T-plant |
| 7.             | 224            | 3.9      | LaF finishing waste                                  |
| 8.             | UR/TBP         | 2.8      | same as TBP waste                                    |
| 9.             | PFeCN1         | 3.7      | Ferrocyanide scavenged UR supernatants<br>in Plant.  |
| 10.            | PFeCN2         | 3.2      | Ferrocyanide scavenged UR supernatants in Plant.     |
| 11.            | TFeCN          | 1.4      | Ferrocyanide scavenged CR Vault                      |
| 12.            | 1CFeCN         | 6.5      | Ferrocyanide scavenged 1C supernatants               |
|                | REL            | OX Wast  | es 1952-62                                           |
| 13.            | R52-58         | 8.9      |                                                      |
| 14.            | R59-67         | 2.3      |                                                      |
| 15.            | CWR/A152-60    | 8.1      |                                                      |
| 16.            | CWR/AI61-72    | 2.9      |                                                      |
|                | PUI            | REX Wast | 28 1956-76                                           |
| 17.            | P56-62         | 2.2      | · · ·                                                |
| 18.            | P63-67/IWW, FP | 3.9      | also called IVWV, FP                                 |
| <b>19</b> .    | P68-72/IWW, FP |          | same as p63-67                                       |
| <b>20</b> .    | PL             | 2.2      |                                                      |
| 21.            | CWP/AI56-60    | 8.1      | Al cladding                                          |

### **BiPO4 and Uranium Recovery Wastes 1944-56**

| 22. | CWP/AJ61-72 | 4   | Al cladding                                                                                                                                                                                                                    |
|-----|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23. | CW/Zr66-72  | 4   | Zr cladding                                                                                                                                                                                                                    |
| 24. | OWW56-62    | 0.6 | also called CARB                                                                                                                                                                                                               |
| 25. | OWW63-67    | 1.1 |                                                                                                                                                                                                                                |
| 26. | OWW68-72    | 0.6 |                                                                                                                                                                                                                                |
| 27. | Z/PFP       | 8 - | derived from analysis of SY-102, 1,910<br>kgal from1976-80 sent to TX-118, 1,656<br>kgal from 19.                                                                                                                              |
| 28. | HS/SSW      | 2   | Strontium semi-works waste definition taken from Lucas.                                                                                                                                                                        |
| 29. | TH66/Thoria | 5.8 |                                                                                                                                                                                                                                |
| 30. | TH70/Thoria | 5.8 |                                                                                                                                                                                                                                |
| 31. | AR Solids   | 4   | "washed" P sludge. Also used to derive SRR.                                                                                                                                                                                    |
| 32. | В           | 0.5 | waste from PAW, processed through B-<br>PLANT for Sr extraction.                                                                                                                                                               |
| 33. | BL          | 2.5 | low level waste from all operations                                                                                                                                                                                            |
| 34. | SRR         | 5   | strontium recovery waste from sluiced P<br>sludge—based on washed PUREX sludge<br>plus added EDTA. HEDTA, and glycolate.                                                                                                       |
| 35. | CSR         | 1   | waste from cesium recovery from<br>supernatants—not a characteristic waste<br>type, but rather a supernatant from which<br>the 137Cs has been removed. Need only<br>to add citrate to supernatants to track this<br>component. |

# Terminal Liquors and Concentrates (not HDW's)

| CC              | derived from analysis of AN-107. This<br>waste, like DSS, derives from B-Plant<br>addition of organic complexants during the<br>Cs and Sr recovery operation. Therefore,<br>its composition is related to the origin of<br>those wastes. |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CC <sup>,</sup> |                                                                                                                                                                                                                                          |
| Salt Slurry     | same as DSS, estimated from chemical model by precipitation (via evaporator).                                                                                                                                                            |
|                 | Once again, DSS derives from the<br>supernatants of a variety of wastes                                                                                                                                                                  |
|                 | following evaporation of water                                                                                                                                                                                                           |
| DSSF            | supernatant of Salt Slurry (or DSS)                                                                                                                                                                                                      |

|     | Decontamination Waste |                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|-----|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 36. | DW                    | 1 decontamination waste, from D&D of<br>plants, but mainly from T Plant operations,<br>mostly Turco residues (phenol, alkyl<br>phosphate esters, hydroxy alkyl amines)<br>with neutralized phosphoric acid. |  |  |  |  |  |  |  |  |
| 37. | N                     | 1 N-Reactor decontamination waste, mainly<br>neutralized phosphoric acid. Concentrates<br>of N are CP (Concentrated Phosphate)<br>waste, which are in AN-106 and AP-102.                                    |  |  |  |  |  |  |  |  |

## Salt Cakes and Salt Slurries

| 38.         | BSItCk        |             |                                                 |
|-------------|---------------|-------------|-------------------------------------------------|
| 39.         | T1SItCk       |             | •                                               |
| 40.         | RSItCk        |             |                                                 |
| 41.         | T2SItCk       |             |                                                 |
| 42.         | BYShCk        |             | Allen, 1976.                                    |
| 43.         | S1SItCk       |             | Allen, 1976                                     |
| 44.         | S2SItSIr      |             | Sait Slurry                                     |
| 45.         | A1ShCk        |             | •                                               |
| <b>46</b> . | A2SitSir      |             | Salt Slurry                                     |
|             | PUREX Was     | stes from 1 | 983-88 Campaign                                 |
| 47.         | P83-88        | 3.9         | now called PXNAW or NCAW.                       |
| <b>48</b> . | PL83-88       | 2.2         | now called PXMSC, among other things.           |
| 49.         | CWP/Zr83-88   | 4           | now called PD or NCRW.                          |
|             | BP/Cpix83-88  | ?           | was SSR, CSR, B, BL now it's all in AY-<br>101. |
|             | BP/NCplx83-88 | ?           | don't know what this was, now in AY-102         |

?

50.

PASF83-88

AY-102

PUREX Ammonia Scrubber Feed, never before seen.

#### Appendix D

#### Spreadsheet SE Tank Layer Model March 1995

Appendix D include spreadsheet tables for the Double Shell Tanks (DSTs) in the SE Quadrant: AN, AP, AW, AY, AZ, and SY. Each TLM spreadsheet table shows the primary waste additions and the solids that we expect from those additions based on the characteristic vol% for that waste type. We compare this prediction with the solids level reported for the tank and indicate either an unknown gain or loss for this tank. The spreadsheets for the Tank Layer Model (TLM) is derived from the Waste Status and Transaction Record Summary (WSTRS) database. The purpose of the TLM is to predict the waste types and solids' volumes in each tank.

Once a tank becomes a "bottoms" receiver, we assume from that point on that any solids that accumulate are salt cake or salt slumy. Salt cake can be any one of seven different types, depending on which evaporator campaign created it. For additional information refer to Section III, pg 6, Salt Cake Accumulation:

| Column Headings | Descriptions                                                                           |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
|                 |                                                                                        |  |  |  |  |  |
| Tank            | tank number                                                                            |  |  |  |  |  |
|                 |                                                                                        |  |  |  |  |  |
| Year            | year of last primary addition and year of solid<br>measurement                         |  |  |  |  |  |
|                 |                                                                                        |  |  |  |  |  |
| Qtr             | quarter of last primary addition and qtr of solid measurement                          |  |  |  |  |  |
|                 |                                                                                        |  |  |  |  |  |
| Meas. solids    | reported solids from Anderson-91 in kgal                                               |  |  |  |  |  |
|                 |                                                                                        |  |  |  |  |  |
| Solids change   | calculated solids based on primary fill record or<br>difference between solids records |  |  |  |  |  |
|                 |                                                                                        |  |  |  |  |  |
| Pred layer      | kgal predicted layer now in tank                                                       |  |  |  |  |  |
| Laver type      | Defined Waste Type for that laver                                                      |  |  |  |  |  |
|                 |                                                                                        |  |  |  |  |  |
| Waste volume    | sumation of primary waste additions calculated for this time period                    |  |  |  |  |  |
|                 |                                                                                        |  |  |  |  |  |
| Comments        | Various details of each calculation                                                    |  |  |  |  |  |

| Tank_n | Year | Qtr | Meas.<br>solids | Solids<br>change | Pred<br>leyer | Layer Type | Waste<br>Volume | Comments              |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|-----------------------|
| AN-101 | 1981 | 1   | 0               |                  |               |            | •               |                       |
|        | 1983 | 2   |                 | 6                |               | PL2        | 281             | 2.2%, Sent to AW-102. |
|        | 1984 | 2   |                 | 1                |               | BL         | 57              | 2.5%, Sent to AW-102. |
|        | 1985 | 2   |                 | 3                |               | PL2        | 143             | 2.2%, Sent to AY-102  |
|        | 1985 | 3   |                 | 0                |               | N          | 50              | 0.1%, Sent to AY-102. |
|        | 1993 | 4   | 0               | -10              |               |            |                 | unk loss              |

SE TLM Rev. 1

| -      | Year | Qtr | Mees.<br>solids | Solids<br>change | Pred<br>Jayer | Lever Type | Waste<br>Volume | Comments                             |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|--------------------------------------|
|        |      |     | •               |                  |               |            |                 |                                      |
| ¥~     | 1981 | 1   | 0               |                  |               |            |                 |                                      |
|        | 1984 | 11  |                 | 0                |               | PL2        | 3               | 2.20%                                |
|        | 1984 | 4   | 24              |                  |               |            |                 |                                      |
| ······ | 1989 | 3   | 89              | 0                |               |            |                 |                                      |
|        | 1992 | 3   |                 |                  |               | PL2        | 15              | 2.20%                                |
|        | 1    |     |                 |                  |               |            |                 | unk, assign A2SItSIry, SU from tanks |
|        | 1993 | 4   | 89              | 89               |               |            |                 | throughout SE quad.                  |

| Tenk_n | Yeer | Qtr | Mees.<br>solids | Solids<br>change                      | Pred<br>leyer | Layer Type | Waste<br>Volume | Comments                |
|--------|------|-----|-----------------|---------------------------------------|---------------|------------|-----------------|-------------------------|
| AN-103 | 1981 | 1   | 0               | 0 ·                                   |               |            |                 |                         |
|        | 1984 | 1   |                 | 2                                     | 2             | BL         | 63              | 2.50%                   |
|        | 1984 | 3   | 63              | 61                                    | I             |            |                 | REC from AN-104.        |
|        | 1985 | 1   | 132             |                                       |               |            |                 |                         |
|        | 1986 | 2   | 912             |                                       |               |            |                 |                         |
|        | 1987 | 11  | 1285            |                                       |               |            |                 | ignore, bad measurement |
|        | 1988 | 2   | 937             | · · · · · · · · · · · · · · · · · · · |               |            |                 |                         |
|        | 1993 | 4   | 937             | 876                                   | 1             |            |                 |                         |

|        | Year | Qtr | Meas.<br>solids | Solids<br>change | Pred<br>layer | Layer Type | Waste<br>Volume | Comments                    |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|-----------------------------|
|        |      |     |                 |                  |               |            |                 |                             |
| AN-104 | 1981 | 1   | -               |                  |               |            |                 |                             |
|        | 1983 | 4   |                 | 0                |               | PL2        | 5               | 2.20%                       |
|        | 1984 | 3   | 19              |                  |               |            |                 | Receive from AW-102.        |
|        | 1984 | 4   | 18              |                  |               |            |                 |                             |
| 1      | 1985 | 1   | 322             | 322              |               |            |                 |                             |
|        | 1987 | 11  | 264             |                  |               | 1          | 1               |                             |
|        | 1993 | 4   | 264             | -58              |               |            |                 | Loss of gas due to venting. |

| Tank_n | Yeer | Qtr | Mees.<br>solide | Solids<br>change | Pred<br>layer | Layer Type | Wasta<br>Volume | Comments | 7 |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|----------|---|
|        | 1000 |     |                 |                  |               |            |                 |          |   |
| AN-105 | 1981 | 4   | 0               | 0                |               |            |                 |          | - |

| ·<br>, | Year | Qtr | Mees.<br>solids | Solids<br>change | Pred<br>layer | Layer Type | Weste<br>Volume | Comments            |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|---------------------|
| L      |      |     |                 |                  |               |            |                 |                     |
| An-106 | 1981 | 1   | 0               | 0                |               |            |                 |                     |
|        | 1987 | 11  | 17              | 17               |               |            |                 | Receive from AW-102 |
|        | 1987 | 2   | 6               | -11              |               |            |                 | unk loss            |
|        | 1989 | 3   | 17              |                  |               |            |                 |                     |
|        | 1993 | 4   | 17              | 11               |               |            |                 | unk gain            |

| Tenk_n | Year | Qtr | Mees.<br>solids | Solids<br>change | Pred<br>leyer | Layer Type | Waste<br>Volume | Comments                                                         |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|------------------------------------------------------------------|
| AN-107 | 1981 | 1   | 0               | 0                |               |            | 1               |                                                                  |
|        | 1987 | 1   | 92              | 1                | 1 .           |            | ·               |                                                                  |
|        | 1989 | 3   | 134             |                  |               |            |                 |                                                                  |
|        | 1993 | 4   | 134             | 134              |               |            |                 | solids due to salt slurry, some receives from AN-102 and AZ-102. |

| -  | Year | Qtr | Mees.<br>colids | Solids<br>change | Pred<br>layer | Layer Type | Weste<br>Volume | Comments                   |
|----|------|-----|-----------------|------------------|---------------|------------|-----------------|----------------------------|
|    |      |     |                 |                  |               |            |                 |                            |
| Ar | 1986 | 3   | 0               | 0                |               |            |                 |                            |
|    | 1987 | 3   |                 | 0                |               | CW/ZR2     | 1               | 2.30%                      |
|    | 1989 | 4   |                 | 19               |               | PASF       | 1929            | 1%                         |
|    | 1993 | 4   | 0               | -19              |               |            |                 | Sent to AW-102 and AP-103. |

| Tank_n | Yeer | Qtr | Mees.<br>solids | Solids<br>change | Pred<br>layer | Layer Type | Waste<br>Volume | Comments                       | ٦. |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|--------------------------------|----|
| AP-102 | 1986 | 3   | 0               | 0                |               | PASF       | 5               | 1%                             |    |
|        | 1993 | 4   | 0               | 0                |               |            |                 | Some sent to AW-102 and Grout. |    |

SE TLM Rev. 1

|        | Year | Qtr | Mees.<br>solids | Solids<br>change | Pred<br>Jayer | Layer Type | Waste<br>Volume | Comments                   |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|----------------------------|
| 4      |      |     |                 |                  |               |            |                 |                            |
| AP-103 | 1986 | 3   |                 | 11               |               | PASF       | 1068            | 1%                         |
|        | 1993 | 4   | 0               | -11              |               |            |                 | Sent to AW-102 and AP-101. |

| Tank_n | Yeer | Qtr | Mees.<br>eclids | Soilds<br>change | Pred<br>lever | Layer Type | Weste<br>Volume | Comments       | Γ |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|----------------|---|
| AP-104 | 1986 | 3   | 0               | 2                |               | N          | 794             | 1%             |   |
|        | 1993 | 4   | 0               | -2               |               |            |                 | Sent to AP-102 |   |

SE TLM Rev. 1

| T        | Year | Qtr | Meas.<br>solids | Solids<br>change | Pred<br>layer | Layer Type | Waste<br>Volume | Comments        |
|----------|------|-----|-----------------|------------------|---------------|------------|-----------------|-----------------|
| <u> </u> |      |     |                 |                  |               |            | ļ               |                 |
| AP-105   | 1986 | 3   | 0               | 0                |               |            |                 |                 |
|          | 1993 | 4   | 0               | 0                |               |            |                 | Sent to AW-102. |

| Tenk_n | Yeer | Qtr | Mees.<br>solids | Solids<br>change | Pred<br>layer | Layer Type: | Waste<br>Volume | Comments                   |  |
|--------|------|-----|-----------------|------------------|---------------|-------------|-----------------|----------------------------|--|
| AP-106 | 1986 | 3   | 0               | 0                |               |             |                 |                            |  |
|        | 1993 | 4   | 0               | 0                |               |             |                 | Sent to AP-105 and AW-102. |  |

SE TLM Rev. 1

| T | Year | Qur | Meas.<br>solids | Solids<br>change | Pred<br>layer | Layer Type | Waste<br>Volume | Comments |
|---|------|-----|-----------------|------------------|---------------|------------|-----------------|----------|
|   | 1986 | 2   | 0               | 0                |               |            | +               |          |
| ~ | 1990 | 1   |                 | 11               |               | PASE       | 1115            | 1%       |
|   | 1993 | 4   | 0               | -11              |               |            |                 | unk loss |

| Tank_n | Year | Qtr | Mees.<br>solids | Solids<br>change | Pred<br>layer | Layer Type | Weste<br>Volume | Comments | 7        |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|----------|----------|
|        |      |     |                 |                  | ļ             |            |                 |          | <b>.</b> |
| AP-108 | 1986 | 3   | 0               | 0                | <u> </u>      |            | I               |          | 1        |
|        | 1990 | 1   |                 | 1                |               | PASF       | 110             | 1%       |          |
|        | 1992 | 2   |                 | 2_               |               | PL2        | 92              | 2.20%    |          |
|        | 1993 | 4   | 0               | -3               |               |            | I               | unk loss |          |

SE TLM Rev. 1

| · /      | Year | Qtr | Mees.<br>solids | Solids<br>change | · Pred<br>leyer | Layer Type | Waste<br>Volume | Comments |
|----------|------|-----|-----------------|------------------|-----------------|------------|-----------------|----------|
| <u> </u> |      |     |                 |                  |                 |            | l               |          |
| W-101    | 1980 | 3   | 0               | 0                |                 |            |                 |          |
|          | 1983 | 4   |                 | 1                |                 | N          | 9               | 1%       |
|          | 1986 | 1   |                 | 61               | 61              | PL2        | 2761            | 2.20%    |
|          | 1987 | 3   | 84              |                  |                 |            | 1               |          |
|          | 1993 | 4   | 84              | 23               |                 |            |                 |          |

| SE TLM | <b>Rev.</b> 1 |
|--------|---------------|
|--------|---------------|

| Tank_n | Year | Qtr                | Meas.<br>solids | Solids<br>change | Pred<br>layer | Layer Type | Weste<br>Volume | Comments                              |
|--------|------|--------------------|-----------------|------------------|---------------|------------|-----------------|---------------------------------------|
| AW-102 | 1991 | $\left[ - \right]$ |                 |                  |               |            | ╉━━━━           | · · · · · · · · · · · · · · · · · · · |
|        | 1982 | 2                  |                 | 0                |               | BL         | 3               | 2.50%                                 |
|        | 1983 | 2                  |                 | 0                |               | PL2        | 21              | 2.20%                                 |
|        | 1964 | 1                  | 3               | 3                |               |            |                 |                                       |
|        | 1984 | 4                  | 1               | -2               |               |            |                 |                                       |
|        | 1986 | 3                  |                 | 20               |               | PL2        | 898             | 2.20%                                 |
|        | 1993 | 4                  | 1               | -22              |               |            |                 | Sent throughout SE qued.              |

ŧ

| <u></u> | Year          | Qtr | Mees.<br>solids | Solids<br>change | Pred<br>layer | Layer Type | Weste<br>Volume | Comments                      |
|---------|---------------|-----|-----------------|------------------|---------------|------------|-----------------|-------------------------------|
|         |               |     |                 |                  |               |            |                 |                               |
| AW-103  | 1980          | 3   | 0               | 0                |               |            |                 |                               |
|         | 1980          | 4   | 959             | 959              |               |            |                 | SU REC from AX-101 and A-101. |
| [       | 1981          | 4   | 0               |                  |               |            |                 | ignore                        |
|         | 1983          | 4   |                 | 28               |               | CW/ZR2     | 265             | 10.50%                        |
|         | 1983          | 4   | 3               | -984             |               |            |                 | sent to AW-105 and AW-106     |
|         | 1984          | 1   |                 | 43               |               | CW/ZR2     | 405             | 10.50%                        |
|         | 1984          | 1   | 47              | 1                |               |            |                 |                               |
|         | 1984          | 3   | 1               | 43               |               | CW/ZR2     | 406             | 10.50%                        |
|         | 1984          | 3   | 340             | 250              |               |            |                 | unk gain                      |
|         | 1984          | 4   | 47              |                  |               |            |                 | ignore                        |
|         | 1986          | 3   |                 | 161              |               | CW/ZR2     | 1535            | 10.50%                        |
|         | 1987          |     | 371             | -130             |               |            |                 |                               |
|         | 1988          | 2   |                 | 77               |               | CW/ZR2     | 729             | 10.50%                        |
|         | 1988          | 3   | 330             | -118             |               |            |                 |                               |
|         | 1988          | 4   |                 | 13               |               | CW/ZR2     | 122             | 10.50%                        |
|         | 1989          | 11  | 363             | 20               |               |            |                 |                               |
|         | 1991          | 1   |                 | 1                |               | PL2        | 10              | 10.50%                        |
|         | 1 <b>9</b> 93 | 4   | 363             | -1               | 363           | CW/ZR2     |                 |                               |

| Tank_n | Year | Qtr | Mees.<br>solids | Solids<br>change | Pred<br>layer | Layer Type | Waste<br>Volume | Comments                  |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|---------------------------|
| AW-104 | 1980 | 3   | 0               | 0                |               |            |                 |                           |
|        | 1982 | 4   |                 | 0                |               | PL2        | 13              | 2.20%                     |
|        | 1983 | 1   |                 | 5                | 5             | CW/ZR2     | 47              | 10.50%                    |
|        | 1984 | 1   | 13              | 8                |               |            |                 |                           |
|        | 1984 | 4   | 32              | 19               |               |            | 8558            | unk gain, REC from AW-102 |
|        | 1985 | 1   | 111             | 67               |               |            |                 |                           |
|        | 1986 | 1   |                 |                  |               |            | 270             | REC from AW-102.          |
|        | 1986 | 4   |                 | 19               |               | PL2        | 863             | 2.20%                     |
|        | 1987 |     | 381             | 251              |               |            |                 |                           |
|        | 1987 | 3   |                 | 17               |               | PL2        | 775             | 2.20%                     |
|        | 1987 | 3   | 290             | -108             |               |            | 11200           | Sent to AW-102.           |
|        | 1991 | 2   |                 | 61               | 36            | PL2        | 2792            | 2.20%                     |
|        | 1993 | 4   | 290             | -61              |               |            | 2317            | Sent to AW-102            |

|        | Year | Qtr | Meas.<br>solids | Solids<br>change | Pred<br>layer | Layer Type | Waste<br>Volume | Comments                               |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|----------------------------------------|
|        |      |     |                 |                  |               |            |                 |                                        |
| AW-105 | 1981 | 1   | 0               | 0                |               |            |                 |                                        |
|        | 1983 | 1   |                 | 0                |               | BL         | 13              | 2.50%                                  |
|        | 1984 | 1   |                 | 30               | 14            | PL2        | 1383            | 2.20%                                  |
|        | 1    | -1  |                 | 1                |               |            |                 | Sent to AW-101, AW-102, AZ-102 and AN- |
|        | 1984 | 1   | 14              | -16              |               |            |                 | 101.                                   |
|        | 1984 | 3   |                 | 10               | 24            | PL2        | 474             | 2.20%                                  |
|        | 1984 | 3   |                 | 33               |               | CW/ZR2     | 313             | 10.50%                                 |
|        | 1984 | 3   | 223             | 166              |               |            |                 |                                        |
|        | 1984 | 4   | 14              |                  |               |            |                 | ignore                                 |
|        | 1987 | 1   |                 | 139              | 172           | CW/ZR2     | 1322            | 10.50%                                 |
|        | 1987 | 1   | 297             | -65              |               |            |                 |                                        |
|        | 1988 | 1   |                 |                  |               |            | 784             | from A2EVAP                            |
|        | 1990 | 1   |                 | 43               | 43            | CW/ZR2     | 410             | 10.50%                                 |
|        | 1992 | 4   | -               | 1                | 1             | PL2        | 58              | 2.20%                                  |
|        | 1993 | 4   | 297             | -44              |               |            |                 | unk loss                               |

| Tank_n | Year | Qtr | Mees.<br>solids | Solids<br>change | Pred<br>layer | Layer Type | Weste<br>Volume | Comments                     |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|------------------------------|
| AW-106 | 1980 | 3   | 0               |                  |               |            |                 |                              |
|        | 1982 | 4   |                 | 1                | 1             | BL         | 33              | 2.50%                        |
|        | 1984 | 11  | 53              |                  |               |            |                 | Start receiving from AW-102. |
|        | 1985 | 11  | 85              |                  |               | 1          | T               |                              |
|        | 1987 | 11  | 258             | 1                |               |            |                 |                              |
|        | 1989 | 2   | 283             |                  |               | i          |                 |                              |
|        | 1992 | 11  | 296             |                  |               |            |                 |                              |
|        | 1993 | 4   | 296             | 296              |               | <u> </u>   |                 |                              |

| ,      |      |     |        |        |       |                  |          |                                      |
|--------|------|-----|--------|--------|-------|------------------|----------|--------------------------------------|
|        |      |     | Ness.  | Solide | Pred  |                  | Waste    |                                      |
|        | Year | Qtr | eolide | change | layer | Layer Type       | Volume   | Comments                             |
|        |      |     |        |        |       |                  | <u> </u> |                                      |
| A1-101 | 1971 | 2   |        | 0      |       | P2               | 3        | 3.90%                                |
|        | 1971 | 2   |        | 2      |       | B                | 318      | 0.50%                                |
|        | 1971 | 2   | 0      | -2     |       |                  |          | unk loss                             |
|        | 1971 | 4   |        | 0      |       | P2               | 11       | 3.90%                                |
|        | 1972 | 2   |        | 10     |       | В                | 1979     | 0.50%                                |
|        | 1972 | 2   | 33     | 23     |       |                  |          | unk gain                             |
|        | 1972 | 3   |        | 3      | 13    | В                | 582      | 0.50%                                |
|        | 1972 | 4   |        | 0      |       | AR               | 4        | 4%                                   |
|        | 1972 | 4   | 0      |        |       |                  |          | ignore, bad measurement              |
|        | 1974 | 4   | 52     | 16     | 32    | UNK (No Assign.) |          | unk gain (unk, no assignment)        |
|        | 1975 | 2   |        | 1      |       | SRR              | 17       | 5%, combined with1986 qtr.3 layer.   |
|        | 1980 | 3   | 61     | 8      |       |                  |          | unk gain, rec from A-103 and AX-102. |
|        | 1981 | 4   |        | 5      | 5     | BL.              | 203      | 2.50%                                |
|        | 1982 | 2   | 50     | -16    |       |                  | 1        | unk loss                             |
|        | 1984 | 3   |        | 7      | 7     | CSR              | 711      | 1%                                   |
|        | 1984 | 4   |        | 2      |       | SAR              | 47       | 5%, combined with 1986 gtr.3 layer.  |
|        | 1984 | 4   |        | 0      |       | PL2              | 3        | 2.20%                                |
|        | 1984 | 4   | 71     | 12     |       |                  |          | unk gain                             |
|        | 1985 | 3   |        | 0      |       | CSR              | 3        | 1%                                   |
|        | 1986 | 3   |        | 5      | 8     | SRR              | 101      | 5%                                   |
|        | 1987 |     | 84     | 6      |       |                  | 1        | unk gain                             |
|        | 1987 | 2   | 83     | -1     |       |                  |          |                                      |
|        | 1988 | 4   |        | 0      |       | BL               | 10       | 2.50%                                |
|        | 1991 | 4   |        |        |       |                  | 37       | from A2EVAP                          |
|        | 1993 | 4   | 83     | 0      |       |                  | 1        |                                      |
| Tank_n | Year | Qur | Mees.<br>solids | Solids<br>change | Pred<br>leyer | Layer Type | Weste<br>Volume | Comments                                                |
|--------|------|-----|-----------------|------------------|---------------|------------|-----------------|---------------------------------------------------------|
| AY-102 | 1971 | 2   | 0               | 0                |               |            |                 |                                                         |
|        | 1978 | •4  | 6               | 6                |               |            |                 | unk gain, possibly SItCk                                |
|        | 1980 | 2   | 21              | 15               |               |            |                 | REC from A-103.                                         |
|        | 1982 | 2   |                 | 0                |               | PL2        | 20              | 2.20%                                                   |
| •      | 1982 | 2   |                 | 15               | 2             | BL         | 594             | 2.50%                                                   |
|        | 1982 | 2   | 23              | -13              |               |            |                 | unk loss, sent to AW-102 and A-102.                     |
|        | 1983 | 2   |                 | 6                | 4             | PL2        | 263             | 2.20%                                                   |
|        | 1987 | 1   |                 | 65               |               | BL         | 2589            | 2.50%                                                   |
|        | 1987 | · , | 27              | -67              |               |            |                 | unk loss, sent to AW-102, AZ-101, AN-102<br>and AN-101. |
|        | 1987 | 2   |                 | 5                | - 5           | BL         | 183             | 2.50%                                                   |
|        | 1987 | 2   | 28              | 1                |               |            | 1               |                                                         |
|        | 1988 | 11  |                 | 25               |               | BL         | 993             | 2.50%                                                   |
|        | 1988 | 11  | 32              | -21              |               |            |                 | Sent to AW-102.                                         |
|        | 1988 | 4   |                 | 1                |               | PL2        | 35              | 2.20%                                                   |
|        | 1992 | 4   |                 | 1                |               | DW         | 96              | 1%                                                      |
|        | 1992 | 4   |                 | 41               | 26            | BL .       | 1630            | 2.50%                                                   |
|        | 1993 | 4   | 32              | -41              |               |            |                 | Distributed throughout SE qued.                         |

| •      | T    |     |        |        |       |                  |          |                                         |
|--------|------|-----|--------|--------|-------|------------------|----------|-----------------------------------------|
|        |      |     | Mess.  | Solide | Pred  |                  | Waste    |                                         |
|        | Year | Qtr | solida | change | layer | Layer Type       | Volume   | Comments                                |
| is     |      |     |        |        |       |                  | L        |                                         |
| AZ-101 | 1976 | 4   | 0      | 0      |       |                  | L        |                                         |
| F      | 1978 | 1   | 3      | 3      |       |                  | <u> </u> | REC from C-104 and C-106                |
|        | 1978 | 3   | 1      | -2     |       |                  |          | unk loss, sent to A-102.                |
|        | 1980 | 2   | 52     | 51     |       |                  |          | unk gain                                |
|        | 1980 | 3   | 72     | 20     |       |                  |          | REC from AX-101.                        |
|        | 1981 | 4   |        | 1      | 1     | PL2              | 46       | 2.20%                                   |
|        | 1981 | 4   | 64     | -9     |       |                  |          | Sent to AW-102.                         |
|        | 1982 | 2   | 17     | -47    |       |                  |          | unk loss                                |
|        | 1982 | 4   |        | 1      | 1     | BL               | 21       | 2.50%                                   |
|        | 1982 | 4   |        | 0      |       | PL2              | 16       | 2.20%                                   |
|        | 1984 | 1   | 8      | -11    | 6     | UNK (No Assign.) |          | unk, no assignment                      |
|        | 1984 | 4   |        | 3      |       | P3               | 82       | 3.9 %, combined with 1985 gtr 4 layer.  |
|        | 1984 | 4   | 20     | 10     |       |                  |          | unk gain poss BL from AY-102.           |
|        | 1985 | 1   |        | 7      |       | P3               | 172      | 3.9% , combined with 1985 gtr 4 lalyer. |
|        | 1985 | 1   | 16     | 4      |       |                  |          | unk loss                                |
|        | 1985 | 3   |        | 0      |       | PL2              | 8        | 2.20%                                   |
|        | 1985 | 4   |        | 17     | 27    | P3               | 427      | 3.90%                                   |
|        | 1985 | 4   | 27     | 4      |       |                  |          | unk loss                                |
|        | 1986 | 1   |        | 2      |       | P3               | 46       | 3.90%                                   |
|        | 1987 | 1   | 48     |        |       |                  |          |                                         |
|        | 1987 | 2   | 46     |        |       |                  |          |                                         |
|        | 1987 | 4   | 54     | 25     |       |                  |          | unk gain                                |
|        | 1988 | 1   | 49     |        |       |                  |          |                                         |
|        | 1988 | 2   | 47     |        |       |                  |          |                                         |
|        | 1989 | 1   | 41     |        |       |                  |          |                                         |
|        | 1989 | 2   | 37     |        |       |                  |          |                                         |
|        | 1990 | 3   | 35     |        |       |                  | T        |                                         |
|        | 1993 | 4   | 35     | -19    |       |                  | [        | Sent to AY-102 and AZ-102.              |

SE TLM Rev. 1

| nk n  | Year | Qtr                          | Mees.<br>solids | Solids<br>change | Pred<br>lever | Layer Type        | Waste<br>Volume | Comments                              |
|-------|------|------------------------------|-----------------|------------------|---------------|-------------------|-----------------|---------------------------------------|
| Z-102 | 1976 | $\left  \frac{1}{1} \right $ | 0               | 0                |               |                   |                 |                                       |
|       | 1978 | 11                           | 30              | 30               |               |                   |                 | •                                     |
|       | 1978 | 3                            | 23              | -7               |               |                   |                 | Sent to A-102                         |
|       | 1980 | 2                            | 2               |                  |               |                   |                 | ignore                                |
|       | 1980 | 4                            | 6               |                  |               |                   |                 | unk loss                              |
|       | 1982 | 2                            | 26              |                  | 26            | UNK (SRR)         |                 | unk gain, probably SRR                |
|       | 1983 | 3                            |                 | 2                |               |                   | 1               |                                       |
|       | 1983 | 4                            |                 | 2                |               | PL2               | 100             | 2.20%                                 |
|       | 1984 | 1                            | 30              | 30               |               |                   |                 |                                       |
|       | 1984 | 3                            |                 | 1                | 3             | PL2               | 34              | 2.20%                                 |
|       | 1984 | 4                            | 32              | 1                | 1             | Z .               | 1               | Secondary transfers of Z from SY-102. |
|       | 1985 |                              | 39              | 7                |               |                   |                 | unk gain                              |
|       | 1985 | 4                            |                 | 2                |               | BL                | 75              | 2.50%                                 |
|       | 1985 |                              | 18              | -23              |               |                   |                 | Sent to AW-102.                       |
|       | 1986 |                              |                 | 7                |               | P3                | 185             | 3.90%                                 |
|       | 1987 | 1                            | 27              | 2                |               |                   |                 | unk gain, REC from AN-101             |
|       | 1987 | 2                            |                 | 0                |               | P3                | 10              | 3.90%                                 |
|       | 1987 | 2                            | 61              | 34               |               |                   |                 | unk pain                              |
|       | 1987 | 3                            |                 | 1                |               | P3                | 32              | 3.90%                                 |
|       | 1987 | 3                            | 66              | 4                |               |                   |                 | unk opin                              |
|       | 1987 | 4                            |                 | 0                |               | P3                | 6               | 3.90%                                 |
|       | 1987 | 4                            | 62              | -4               |               |                   |                 | unk gein                              |
|       | 1988 | 11                           |                 | 1 1              |               | P3                | 34              | 3.90%                                 |
|       | 1988 | 11                           | 74              | 11               |               |                   | +               | unk gain                              |
|       | 1988 | 2                            | -               | 1                | †             | P3                | 21              | 3.90%                                 |
|       | 1988 | 2                            | 65              | -10              |               |                   |                 | unk loss                              |
|       | 1988 | 3                            |                 | 0                |               | PL2               | 8               | 2.20%                                 |
|       | 1988 | 3                            |                 | 2                |               | P3                | 56              | 3.90%                                 |
|       | 1988 | 3                            | 77              | 10               |               | f                 | +               | unk gain                              |
|       | 1988 | 4                            |                 | 2                | 13            | P3                | 46              | 3.90%                                 |
|       | 1989 | 1 1                          | 90              | · 11             |               |                   | +               | unk anin                              |
|       | 1989 | 2                            |                 | 0                | +             | 123               | 3               | 13.90%                                |
|       | 1989 | 2                            | 88              |                  |               |                   | <b>~</b>        | Sent to AY-102 and AZ-101.            |
|       | 1990 | +                            | <u> </u>        |                  | +             | P3                | 12              | 3.90%                                 |
|       | 1990 | 3                            | 91              | 3                | +             |                   | <u>+'</u>       |                                       |
|       | 1991 | +                            |                 | +                | <del> </del>  | PI 2              |                 | 2.20%                                 |
|       | 1992 | 1 2                          | 95              | + <u>*</u>       | +             |                   | +               |                                       |
|       | 1002 | +                            | 95              | +                | E0            | LINK Die Arrien 1 |                 | lunk no periorment                    |

| ·    | Year | Qtr | Mons.<br>solids | Solide<br>change | Pred<br>Jayor | Layer Type | Waste<br>Volume | Comments                  |
|------|------|-----|-----------------|------------------|---------------|------------|-----------------|---------------------------|
| 5-01 | 1977 | 2   | 13              | 13               |               | SitSirv    | <u> </u>        | from 242S S2EVAP          |
|      | 1977 | 3   | 26              |                  |               |            |                 | Slurry Receiver           |
|      | 1977 | 4   | 114             |                  |               |            |                 |                           |
|      | 1978 | 3   | 135             |                  |               |            |                 |                           |
|      | 1979 | 3   | 696             |                  |               |            |                 |                           |
|      | 1984 | 4   | 1126            | 1113             |               |            |                 |                           |
|      | 1985 | 4   | 1121            |                  |               |            |                 |                           |
|      | 1991 |     | 1090            | -23              |               |            |                 | loss due to vent          |
|      | 1993 | 4   | 1090            |                  |               |            |                 | solids due to salt slurry |

|        |      |     |                 |        |          |            | Wanta  |                                                      |
|--------|------|-----|-----------------|--------|----------|------------|--------|------------------------------------------------------|
| Tenk n | Year | Qtr | Nees.<br>soiids | change | layer    | Layer Type | Valume | Comments                                             |
|        | 1    |     |                 |        |          |            |        |                                                      |
| SY-102 | 1977 | 2   | 0               | 0.     |          |            |        |                                                      |
|        | 1977 | 4   |                 |        |          | NIT        | 52     |                                                      |
|        | 1977 | 4   | 21              | 21     |          |            |        | EVAP feed tank                                       |
| •      | 1978 |     | 87              | 66     |          |            |        | unk gain, REC from S-103, U-102, U-105 and U-107     |
|        | 1978 | 3   | 77              | -10    |          |            |        | unk loss, Sent to S-103, S-107 and U-107             |
|        | 1978 |     | 83              | 6      |          |            | 1      | unk gain, REC from S-107, S-102, SX-106<br>and U-111 |
|        | 1979 | 3   | 105             | 22     | <u> </u> |            |        | unk gain                                             |
|        | 1979 | 4   | 83              | -22    |          |            |        | unk loss                                             |
|        | 1980 |     | 105             | 22     | 41       | S28ItSky   | 1      | unk gain                                             |
|        | 1984 | 3   |                 | 64     |          | Z          | 796    | 8%                                                   |
|        | 1984 | 4   |                 | 18     |          | DW         | 1786   | 1%                                                   |
|        | 1984 | 4   | 41              | -146   |          |            |        | pumped throughout SE                                 |
|        | 1985 | 1   |                 | 7      |          | Z          | 86     | 8%                                                   |
| •      | 1985 | 1   |                 | 1      |          | DW         | 77     | 1%                                                   |
|        | 1985 | 1   | 52              | 3      |          |            |        | unk gain                                             |
|        | 1987 | 1   |                 | 4      |          | Z          | 370    | 8%                                                   |
|        | 1987 | 1   |                 | 7      |          | DW         | 671    | 1%                                                   |
|        | 1987 | 1   | 54              | -9     |          |            |        | Sent to AY-102 and AZ-102                            |
|        | 1987 | 2   |                 | 1      | 25       | Z          | 11     | 8%                                                   |
|        | 1987 | 2   |                 | 1      | 5        | DW         | 96     | 1%                                                   |
|        | 1987 | 2   | 71              | 15     |          |            |        | unk gain                                             |
|        | 1990 | 1   |                 | 5      |          | DW         | 495    | 1%                                                   |
|        | 1992 | 1   |                 | 14     |          | Z          | 179    | 8%                                                   |
|        | 1993 | 4   | 71              | -19    |          |            |        | unk loss, sent to AY-102                             |

| -    | Year | Qtr | Meas.<br>solids | Solids<br>change | Pred<br>layer | Waste<br>Volume | Comments                  |
|------|------|-----|-----------------|------------------|---------------|-----------------|---------------------------|
|      |      |     |                 |                  |               | <br>            |                           |
| S_J3 | 1977 | 2   | 0               | 0                |               |                 |                           |
|      | 1980 | 4   | 135             |                  |               |                 | XIN from S2EVAP           |
|      | 1981 | 1   | 534             |                  |               |                 |                           |
|      | 1981 | 2   | 523             | 1                |               |                 |                           |
|      | 1981 | 4   | 517             |                  |               |                 |                           |
|      | 1984 | 4   | 521             |                  |               |                 |                           |
|      | 1985 | 4   | 577             |                  |               |                 |                           |
|      | 1993 | 4   | 577             | 577              |               |                 | solids due to salt slurry |

### Appendix E

### Graphs Tank Layer Model (TLM)

### March 1995

### Graphs

Included are bar graphs for the following:

SE Quadrant: AN, AP, AW, AY, AZ, SY

These graphs show the relative amounts of each sludge, salt cake, and salt slurry associated with waste types from the Defined Waste List. The volumes reported represent estimated volumes of particular types of solids, which we recognize are not necessarily laterally homogeneous. The waste layers are chronologically ordered in each graph, the bottom being oldest.



E-2



ø

----



.





•

**9** Ш

. . . .

•

•

.

# Los Alamos

NATIONAL LABORATORY

Chemical Science and Technology Responsible Chemistry for America

CST-4, Kenn Jurgensen, J586 Los Alamos, New Mexico 87545 (505) 667-0838, FAX 667-0851 CST-4: 95-037/109

April 19, 1995

David Forehand P.O. Box 1970 MSIN S7-31 Richland, WA. 99352

Dear Mr. Forehand,

Enclosed are clarifications which have been made to the SE quadrant Tank Layer Model (TLM) and revised inventory estimates for tank AW-101. The 61 kgal of PL2 waste for AW-101 was incorrectly assigned to CW/ZR waste in our spreadsheet calculations. Please replace the old inventory estimates for tank AW-101 with these new tables.

If there are any questions or problems, please feel free to call me at (505) 667-0838.

Sincerely. Kenneth A. Jurgensen

Enc: a/s

Cy:

S. J. Eberlein, WHC w/enc.
T.M. Brown, WHC, w/enc.
Louis Shelton, WHC, w/enc.
C.H. Brevick, ICF Kaiser, w/enc.
L.A. Gaddis, ICF Kaiser, w/enc.
R. Anema, Ogden, w/enc.
T. Hirons, J591, w/enc.
D. MacFarland, K557, w/enc.
K. Pasamehmetoglu, K555, w/enc.
S. Wagner, LANL c/o PNL w/enc.
S.F. Agnew, CST-4, J586, w/enc.
File, CST-4, J586

An Equal Opportunity Employer/Operated by the University of California

.

.

•

# Additions or changes for Tank Layer Model (TLM)

| Date    | Page | Row  | Column   | Current            | Additions or<br>Changes |
|---------|------|------|----------|--------------------|-------------------------|
|         |      |      |          | neuung             | -                       |
| 4/17/95 | D-3  | 8    | 7        |                    | No TLM assignment.      |
| 4/17/95 | D-3  | 8    | 9        | unk, assign        | solids from             |
|         |      |      |          | A2SItSIry, SU from | concentrate             |
|         |      |      |          | tanks throughout   | 1                       |
|         |      |      |          | SE quad            | 1                       |
| 4/17/95 | D-4  | 10   | 7        |                    | No TLM assignment       |
| 4/17/95 | D-4  | 10   | 9        |                    | solids from             |
|         |      |      |          |                    | concentrate             |
| 4/17/95 | D-5  | 10   | 7        |                    | No TLM assignment.      |
| 4/17/95 | D-5  | 10   | 9        |                    | solids from             |
|         |      |      |          |                    | concentrate             |
| 4/17/95 | D-7  | 7    | 7        |                    | No TLM assignment       |
| 4/17/95 | D-7  | 7    | 9        |                    | solids from             |
|         |      |      | 1        |                    | concentrate             |
| 4/17/95 | D-8  | 6    | 7        | •                  | No TLM assignment       |
| 4/17/95 | D-8  | 6    | 9        |                    | solids from             |
|         |      |      |          |                    | concentrate             |
| 4/17/95 | D-17 | 7    | 7        |                    | No TLM assignment       |
| 4/17/95 | D-17 | 7    | 9        |                    | solids from             |
|         |      |      |          |                    | concentrate             |
| 4/17/95 | D-22 | 10   | 7        |                    | No TLM assignment       |
| 4/17/95 | D-22 | 10   | 9        |                    | solids from             |
|         |      |      |          |                    | concentrate             |
| 4/17/95 | D-27 | 8    | 7        |                    | No TLM assignment       |
| 4/17/95 | D-27 | 8    | 9        |                    | solids from             |
|         |      |      |          |                    | concentrate             |
| 4/17/95 | D-28 | 11   | 9        | unk gain           | solids from             |
|         |      |      |          |                    | concentrate             |
| 4/17/95 | D-29 | . 10 | 7        |                    | No TLM assignment       |
| 4/17/95 | D-29 | 10   | 9        | solids due to salt | solids from             |
|         |      |      | <u> </u> | slurry             | concentrate             |
| 4/17/95 | D-18 | 9    | 7        |                    | No TLM assignment       |
| 4/17/95 | D-18 | 9    | 9        | Sent throughout    | Sent throughout SE      |
|         |      | ţ    | 1        | SE quad.           | quad., solids from      |
|         |      |      | <u> </u> |                    |                         |
| 4/17/95 | D-20 | 15   | 7        |                    | NO ILM assignment       |
| 4/17/95 | D-20 | 15   | 9        | Sent to Aw-102     | Sent to AW-102,         |
| ]       |      |      |          |                    | SOURS TROM              |
|         |      |      | ļ        | [····              |                         |
| 4/17/95 | D-21 | 13   | 7        |                    | NO ILM assignment       |

~

| 4/17/95 | D-21 | 13 | 9 | from A2EVAP | from A2EVAP, solids from concentrate    |
|---------|------|----|---|-------------|-----------------------------------------|
| 4/17/95 | D-23 | 26 | 7 |             | No TLM assignment                       |
| 4/17/95 | D-23 | 26 | 9 | from A2EVAP | from A2EVAP, solids<br>from concentrate |
| 4/17/95 | D-26 | 9  | 7 |             | No TLM assignment                       |
| 4/17/95 | D-26 | 9  | 9 |             | solids from<br>concentrate              |
| 4/17/95 | D-28 | 11 | 9 | unk gain    | unk gain, solids from concentrate       |

# Additions or changes for the Inventory Estimates and Supernatant Mixing Model (SMM)

Replace tables of Total Inventory Estimate, TLM Solids Composite Inventory Estimate and SMM Composite Inventory Estimate for Double-Shell Tank 241-AW-101.

| Double-Shell Tank 241-AW-101           |                                        |                          |                |  |  |  |  |  |
|----------------------------------------|----------------------------------------|--------------------------|----------------|--|--|--|--|--|
| Total Inventory Estimate*              |                                        |                          |                |  |  |  |  |  |
| Physical Properties                    |                                        |                          |                |  |  |  |  |  |
| Total Waste                            | 5.95E+06 kg                            | 5.95E+06 kg (1.14E+03 kg |                |  |  |  |  |  |
| Hest Losd                              | 6.82 kW                                | (2.33E+04                | BTU/ar)        |  |  |  |  |  |
| Bulk Density†                          |                                        | 1.38 (g/cc)              |                |  |  |  |  |  |
|                                        |                                        |                          |                |  |  |  |  |  |
| Water wi%†                             |                                        | 51.1                     |                |  |  |  |  |  |
| TOC wt% C (wet)†                       |                                        | 0.907                    |                |  |  |  |  |  |
| Chasical Constituent                   | s ···································· | ppm. · · ·               | kg             |  |  |  |  |  |
| Na                                     | 8.26                                   | 1_38E+05                 | 8.18E+05       |  |  |  |  |  |
| Al <sup>p</sup>                        | 0.946                                  | 1.85E+04                 | 1.10E+05       |  |  |  |  |  |
| Fe <sup>2+</sup> (total Fe)            | 0.108                                  | 4.39E+03                 | 2.61E+04       |  |  |  |  |  |
| <u>م</u>                               | 2.97E-02                               | 1.12E+03                 | 6.65E+03       |  |  |  |  |  |
| Bi⊁                                    | 8.62E-04                               | 131                      | 776            |  |  |  |  |  |
| له <sup>ي.</sup>                       | 5.34E-06                               | 0.538                    | 3.20           |  |  |  |  |  |
| Hg≯                                    | 1.03E-05                               | 1.49                     | 8.88           |  |  |  |  |  |
| Zr (as ZrO(OH)2)                       | 1.97E-03                               | 130                      | 773            |  |  |  |  |  |
| Pb <sup>2*</sup>                       | 9.26E-05                               | 13.9                     | 82.6           |  |  |  |  |  |
| Ni*                                    | · 1.09E-02                             | 462                      | 2.75E+03       |  |  |  |  |  |
| \$ <sup>2</sup>                        | 5.65E-06                               | 0.358                    | 2.13           |  |  |  |  |  |
| Ma <sup>**</sup>                       | 1.08E-02                               | 431                      | 2.562+03       |  |  |  |  |  |
| Ca <sup>2+</sup>                       | 5.67E-02                               | 1.65E+03                 | 9.79E+03       |  |  |  |  |  |
| K.                                     | 0.131                                  | 3.71E+03                 | 2.21E+04       |  |  |  |  |  |
| OH                                     | 4.58                                   | 5.65E+04                 | 3.365+05       |  |  |  |  |  |
| NOJ                                    | 3.26                                   | 1.47E+05                 | 8.72E+05       |  |  |  |  |  |
| NO2                                    | 1.43                                   | 4.78E+04                 | 2.84E+05       |  |  |  |  |  |
| C03+                                   | 0.481                                  | 2.09E+04                 | 1.248+05       |  |  |  |  |  |
| PO4 <sup>1-</sup>                      | 0.162                                  | 1.12E+04                 | 6.63E+04       |  |  |  |  |  |
| SO4 <sup>2</sup>                       | 0.206                                  | 1.43E+04                 | 8.52E+04       |  |  |  |  |  |
| Si (as SiO, )                          | 3.87E-02                               | 788                      | 4.69E+03       |  |  |  |  |  |
| F                                      | 0.172                                  | 2.37E+03                 | 1.41E+04       |  |  |  |  |  |
| a                                      | 0.141                                  | 3.62E+03                 | 2.15E+04       |  |  |  |  |  |
| C.H.O.                                 | 2.785-02                               | 3.81E+03                 | 2.27E+04       |  |  |  |  |  |
| EDTA                                   | 1.21E-02                               | 2.53E+03                 | 1.51E+04       |  |  |  |  |  |
| HEDTAL                                 | 1.98E-02                               | 3.94E+03                 | 2.34E+04       |  |  |  |  |  |
|                                        |                                        |                          |                |  |  |  |  |  |
| sivolate                               | 0.135                                  | 7.32E+03                 | 4.35E+04       |  |  |  |  |  |
| acetate                                | 1.42E-02                               | 608                      | 3.62E+03       |  |  |  |  |  |
| complete <sup>3</sup>                  | 2.02E-05                               | 1.29                     | 7.64           |  |  |  |  |  |
| DBP                                    | 1.51E-02                               | 1.78E+03                 | 1.06E+04       |  |  |  |  |  |
| batanol                                | 1_51E-02                               | 812                      | 4.83E+03       |  |  |  |  |  |
|                                        |                                        |                          |                |  |  |  |  |  |
| NH.                                    | 0.406                                  | 5.00E+03                 | 2.97E+04       |  |  |  |  |  |
| ExCND.*                                | 0                                      | 0                        | 0              |  |  |  |  |  |
| Redicionical Constitu                  | ande in section of the                 | L                        |                |  |  |  |  |  |
| Pu                                     |                                        | 4.30E-02 (uCi/e)         | 4.26 (kg)      |  |  |  |  |  |
| 11                                     | 6.72E-03 0-0                           | 1.16E+03 (us/s)          | 6.89E+03 (ke)  |  |  |  |  |  |
| ~                                      | 0.240 (Ciff)                           | 174 (uCi/e)              | 1.03 -+06 (03) |  |  |  |  |  |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 6 80E-07 (Ci/L)                        | 49.2 (uCi/e)             | 2.93E+05 (Ci)  |  |  |  |  |  |
| 1 <b></b>                              |                                        |                          |                |  |  |  |  |  |

\*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.

| Double-Sheil Tank 241-AW-101             |                  |                |                |  |  |  |  |  |
|------------------------------------------|------------------|----------------|----------------|--|--|--|--|--|
| TLM Solids Composite Inventory Estimate" |                  |                |                |  |  |  |  |  |
| Physical Properties                      |                  |                |                |  |  |  |  |  |
| Total Solid Waste                        | 2.680+05 kg      | (61 k          | al)            |  |  |  |  |  |
| Heat Load                                | 1.52 kW          | (5.19E+03      | BTU/br)        |  |  |  |  |  |
| Bulk Density                             |                  | 1.16 (g/cc)    |                |  |  |  |  |  |
| Void Fraction                            |                  | 0.918          |                |  |  |  |  |  |
| Water wi%                                |                  | 79.1           |                |  |  |  |  |  |
| TOC we% C (we)                           |                  | 0.036          |                |  |  |  |  |  |
| Chanical Constituent                     | st. mole/L       | Ppm  kt        |                |  |  |  |  |  |
| Na*                                      | 0.589            | 1.17E+04       | 3.12E+03       |  |  |  |  |  |
| Al <sup>a</sup>                          | 0                | 0              | 0              |  |  |  |  |  |
| Fer (total Fe)                           | 1.90             | 9.155+04       | 2.455+04       |  |  |  |  |  |
| <b>C</b> *                               | 7.355-03         | 329            | 23             |  |  |  |  |  |
| Bi <sup>s</sup>                          | 0                | 0              | 0              |  |  |  |  |  |
| La <sup>j+</sup>                         | 0                | 0              | 0              |  |  |  |  |  |
| He'                                      | 0                | 0              | 0              |  |  |  |  |  |
| Zr (= ZrO(OH)_)                          | 0                | 0              | 0              |  |  |  |  |  |
| Pb*                                      | 3.995-05         | 7.13           | 1.91           |  |  |  |  |  |
| Ni <sup>p</sup>                          | 0.112            | 5.66E+03       | 1.52E+03       |  |  |  |  |  |
| 8.7                                      | 0                | 0              | 0              |  |  |  |  |  |
| M6**                                     | 5.51E-03         | 261            | 70.0           |  |  |  |  |  |
| Ce <sup>2+</sup>                         | 0.215            | 7.41E+03       | 1.99E+03       |  |  |  |  |  |
| <b>r</b> .                               | 5.51E-03         | 186            | 49.8           |  |  |  |  |  |
| OF                                       | 5.94             | 8.69E+04       | 2.33E+04       |  |  |  |  |  |
| NO3                                      | 0.232            | 1.240+04       | 3.32E+03       |  |  |  |  |  |
| NOT                                      | 1.295-02         | 510            | 137            |  |  |  |  |  |
| C032                                     | 0.308            | 1.59E+04       | 4.27E+03       |  |  |  |  |  |
| PO4 <sup>3-</sup>                        | 6.395-02         | 5.23E+03       | 1.405+03       |  |  |  |  |  |
| 8043                                     | 3.72E-03         | 308            | 82.4           |  |  |  |  |  |
| Si (as SiO-5)                            | 0                | 0              | 0              |  |  |  |  |  |
| F                                        | 0                | 0              | 0              |  |  |  |  |  |
| œ.                                       | 3_595-03         | 110            | 29.4           |  |  |  |  |  |
| C.H.O.                                   | 0                | 0              | 0              |  |  |  |  |  |
| EDTA <sup>4</sup>                        |                  |                |                |  |  |  |  |  |
| HEDTA                                    |                  |                |                |  |  |  |  |  |
|                                          | ++               |                |                |  |  |  |  |  |
| stypolate                                | 0                |                | 0              |  |  |  |  |  |
| actate                                   |                  |                | 0              |  |  |  |  |  |
|                                          |                  |                |                |  |  |  |  |  |
| DBP                                      | 2.895.03         | 663            | 172            |  |  |  |  |  |
| Intend                                   | 2.895.01         | 125            | 49.5           |  |  |  |  |  |
|                                          |                  |                |                |  |  |  |  |  |
| NH.                                      | 4 205-06         | 7.126.02       | 1.916-02       |  |  |  |  |  |
| Er(Ch).+                                 |                  |                | 0              |  |  |  |  |  |
| Pedieleniani Canada                      |                  |                |                |  |  |  |  |  |
| Pu                                       |                  | 0147 (         | 0656 (tre)     |  |  |  |  |  |
| 17                                       | 425-4400         | 87 1 / seales  | 71 1 (1-0)     |  |  |  |  |  |
| <u>.</u>                                 | 2 765 00 (0:// ) | 73 \$ /        | (A) 50.175 3   |  |  |  |  |  |
|                                          |                  |                | 2 21 2405 (04) |  |  |  |  |  |
| han .                                    | (L/L)            | اللالاسال) شده |                |  |  |  |  |  |

"Unknowns in tank solids inwastory are satigned by Tank Layering Model (TLM).

| Double-Shell Tank 241-AW-101 |                                  |                     |                       |  |  |  |  |  |
|------------------------------|----------------------------------|---------------------|-----------------------|--|--|--|--|--|
| S                            | SMM Composite Investory Estimate |                     |                       |  |  |  |  |  |
| Physical Properties          |                                  |                     |                       |  |  |  |  |  |
| Total Supernaturat Waste     | 5.68E+06 kg                      | (1.08E+0            | )3 kgal)              |  |  |  |  |  |
| Hest Losd                    | 5.30 kW (1.81E+04 BTUAr)         |                     |                       |  |  |  |  |  |
| Bulk Density*                |                                  | 1_39 (g/cc)         |                       |  |  |  |  |  |
|                              |                                  |                     |                       |  |  |  |  |  |
| Water witht                  |                                  | 49.5                |                       |  |  |  |  |  |
| TOC wt% C (wet)              |                                  | 0.956               | · · · · ·             |  |  |  |  |  |
| Chemical Constituents        | mole/L                           | a <b>ppn</b> a tyle | ic .                  |  |  |  |  |  |
| Na                           | 8.70                             | 1.44E+05            | \$.15E+05             |  |  |  |  |  |
| ۸ľ*                          | 1.000                            | 1.94E+04            | 1.10E+05              |  |  |  |  |  |
| Fe <sup>3+</sup> (total Fe)  | 6.83E-03                         | 274                 | 1_55E+03              |  |  |  |  |  |
| <u>م</u> بہ                  | 3.105-02                         | 1.165+03            | 6.562+03              |  |  |  |  |  |
| Bi <sup>1+</sup>             | 9.11E-04                         | 137                 | 776                   |  |  |  |  |  |
| La <sup>3+</sup>             | 5.64E-06                         | 0.563               | 3.20                  |  |  |  |  |  |
| Hg <sup>)*</sup>             | 1.09E-05                         | 1.56                | 8.88                  |  |  |  |  |  |
| Zr (as ZrO(OE).)             | 2.085-03                         | 136                 | 773                   |  |  |  |  |  |
| Ph <sup>2+</sup>             | 9.565-05                         | 14.2                | 20.7                  |  |  |  |  |  |
| N5 <sup>2+</sup>             | 5.14E-03                         | 216                 | 1.23E+03              |  |  |  |  |  |
| <u>بري</u>                   | 5 97E-06                         | 0.375               | 2 13                  |  |  |  |  |  |
| 34<br>144 <sup>44</sup>      | 1.11E-02                         | 439                 | 2 49E+03              |  |  |  |  |  |
|                              | 4 78E-02                         | 1 385+03            | 7 \$15+03             |  |  |  |  |  |
| ~~                           | 0 138                            | 1 225+01            | 7 205+04              |  |  |  |  |  |
|                              | 451                              | 5.50E+04            | 3 125+05              |  |  |  |  |  |
| NOT                          | 3.44                             | 1 515405            | 5.122+05              |  |  |  |  |  |
| NOT                          | 1 51                             | 5.005+04            | 2 845405              |  |  |  |  |  |
|                              | 0.491                            | 7 175+04            | 1 2015+05             |  |  |  |  |  |
| 2005                         | 0.451                            | 1145+04             | 6.495+04              |  |  |  |  |  |
|                              | 0.217                            | 1.1405+04           | 9 \$1E+04             |  |  |  |  |  |
|                              | 4.005.00                         | 1.54574             | 4.685402              |  |  |  |  |  |
| St (# 510)")                 | 9.092-02                         | 2 455-02            | 1.055105              |  |  |  |  |  |
| 1                            | 0.142                            | 2.485403            | 1.415-04              |  |  |  |  |  |
|                              | 0.149                            | 3.745403            | 2.135-04              |  |  |  |  |  |
| CellyOr"                     | 1.74.0-02                        | 3.572-03            | 1.612+04              |  |  |  |  |  |
| EDIA-                        | 1.145-02                         | 2.632-03            | LSIET04               |  |  |  |  |  |
| HEDTA                        | 2.106-02                         | 4.135403            | 2.345704              |  |  |  |  |  |
|                              |                                  |                     |                       |  |  |  |  |  |
| glycolate                    | 0.142                            | 7.6/E+03            | 4.335+04              |  |  |  |  |  |
| sotate                       | 1.50E-02                         | 637                 | 3.622+03              |  |  |  |  |  |
| cocaiste"                    | 2.13E-05                         | 1.35                | 1.04                  |  |  |  |  |  |
|                              | 1.585-02                         | 1.836+03            | 1.045+04              |  |  |  |  |  |
| butanol                      | 1.585-02                         | 841                 | 4./82703              |  |  |  |  |  |
|                              |                                  | 1                   |                       |  |  |  |  |  |
| NH,                          | 0.429                            | 5.245+03            | 2.97E+04              |  |  |  |  |  |
| Fe(CN).                      | 0                                | 0                   | 0                     |  |  |  |  |  |
| Radiological Constitute      |                                  |                     |                       |  |  |  |  |  |
| Pu                           | 53.1 (µCi/L)                     |                     | 3.61 (kg)             |  |  |  |  |  |
| U                            | 7.08E-03 (M)                     | 1.21E+03 (ug/g)     | 6.87E+03 (kg)         |  |  |  |  |  |
| C4                           | 0.252 (Ci/L)                     | (g/iCu/g) 181       | 1.03E+06 (Ci)         |  |  |  |  |  |
| Sr                           | 1.76E-02 (Ci/L)                  | 12.6 (µCi/g)        | 7.17 <b>E+04 (Ci)</b> |  |  |  |  |  |

"Density is calculated based on Na, OH, and AlO2".

TWater with derived from the difference of density and total dissolved species.

**`**....

# Los Alamos BORATORY

NATIONAL L

#### **Chemical Science and Technology** Responsible Chemistry for America

CST-4, Kenn Jurgensen, J586 Los Alemos, New Mexico 87545 (505) 657-0838, FAX 667-0851 CST-4: 95-039/111

April 21, 1995

**David Forehand** P.O. Box 1970 **MSIN S7-31** Richland, WA. 99352

Dear Mr. Forehand,

Enclosed are the corrections for page V and E-1 of the SE quadrant Tank Layer Model (TLM) which we discussed on April 20, 1995.

If there are any questions or problems, please feel free to call me at (505) 667-0838.

Sincerely, Kenneth A. Jurgensen

Enc: 2/2

CIC-DO, A150, w/o enc. Cy. File, CST-4, J586

### Abstract

This report describes a model for solids accumulation in waste tanks at Hanford. This model is known as the Tank Layer Model (TLM), and applies that model to 149 single-shell tanks and 28 double-shell tanks in the 200-East and 200-West areas at Hanford. The TLM uses the information that has been obtained on the transaction history for each tank to predict solids accumulations by two fundamentally different strategies. The first strategy is used for primary waste additions, which are waste additions from process plants direct into the waste tanks. These primary transactions are used along with solids reports for each tank to derive an average volume per cent solids for each of wastes on the Defined Waste List. Solids accumulations are then assigned to a particular Defined Waste for tanks for which solids information is missing or inconsistent.

A second strategy is used for tanks where solids accumulate as a result of evaporative concentration of supernatants. All solids that accumulate in such tanks occur after they have been designated as "bottoms" receivers and are assigned to either salt cakes or salt slurries, depending on the particular evaporator campaign that resulted in the waste volume reduction. This approach leads to seven salt cakes and two salt slurries, each of which is specified as a Defined Wastes. Such concentrates are, then, inherently averaged over the tens of millions of gallons of supernatants that were involved in each evaporator campaign.

The results of the TLM analysis are a description of each tank's solids in terms of sludge layers, salt cake, and salt slurry. The composition of each layer is described in the Hanford Defined Waste report. Although interstitial liquid is incorporated within the composition for each solids type, any residual supernatants that reside in these tanks are not described by this model. The output of the TLM, then, can only be used to predict the inventory of the sludges and saltcakes that reside within each waste tank.

## Appendix E

Graphs Tank Layer Model (TLM)

March 1995

## Graphs

Included are bar graphs for the following:

SE Quadrant: AN, AW, AY, AZ, SY

These graphs show the relative amounts of each sludge, salt cake, and salt slurry associated with waste types from the Defined Waste List. The volumes reported represent estimated volumes of particular types of solids, which we recognize are not necessarily laterally homogeneous. The waste layers are chronologically ordered in each graph, the bottom being oldest.

ſ